Skip to main content

An Application of Learned Multi-modal Product Similarity to E-Commerce

  • Conference paper
  • First Online:
Similarity Search and Applications (SISAP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13590))

Included in the following conference series:

Abstract

Product similarity search is an important tool for e-com-merce companies to manage their portfolios of products and to find competitive prices on large electronic market places. The specific requirements for this similarity search application are (i) the similar products should be competitive products with respect to a given query product, (ii) related and just generally similar products should be treated as not similar products. Thus, the similarity between products should be learned from data. We propose to use classification models for entity matching and image classification to learn a multi-modal model for similarity search. Further, we propose a way to construct a meaningful training data set to learn the relevant similarities between product pairs. Extensive experiments show that a transformer based language model combined with Siamese convolutional neural networks outperform competitive baseline models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We specify the Amazon ASIN and embed the full link in the PDF file: B00AG7XYF0.

  2. 2.

    We give the ASINs of the top 5 results: B00449491O, B004490TNQ, B000065CEB, B0015AQMSS, B0017JW7I6.

  3. 3.

    Generally similar but unrelated products returned by the multi-modal baseline: B00A6W2AOQ, B00Y73TB1A, B001737NYU, B01AO2KO3Q.

References

  1. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a Siamese time delay neural network, pp. 737–744 (1993)

    Google Scholar 

  2. Chicco, D.: Siamese neural networks: an overview. 2190, 73–94 (2021)

    Google Scholar 

  3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. CoRR abs/1810.04805 (2018)

    Google Scholar 

  4. Dou, W., et al.: Empowering transformer with hybrid matching knowledge for entity matching. In: Bhattacharya, A., et al. (eds.) Database Systems for Advanced Applications, pp. 52–67. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-00129-1_4

    Chapter  Google Scholar 

  5. Ebraheem, M., Thirumuruganathan, S., Joty, S.R., Ouzzani, M., Tang, N.: Distributed representations of tuples for entity resolution. Proc. VLDB Endow. 11(11), 1454–1467 (2018)

    Article  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 770–778. IEEE Computer Society (2016)

    Google Scholar 

  7. Hoffmann, U., da Silva, A.S., de Carvalho, M.G.: Finding similar products in e-commerce sites based on attributes. In: Calì, A., Vidal, M.E. (eds.) Proceedings of the 9th Alberto Mendelzon International Workshop on Foundations of Data Management. CEUR Workshop Proceedings, vol. 1378 (2015)

    Google Scholar 

  8. Huang, Z., Zeng, D., Chen, H.: A comparison of collaborative-filtering recommendation algorithms for e-commerce. IEEE Intell. Syst. 22(5), 68–78 (2007)

    Article  Google Scholar 

  9. Koch, G., Zemel, R., Salakhutdinov, R., et al.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop, vol. 2 (2015)

    Google Scholar 

  10. Kumar, V., Carneiro, G., Reid, I.D.: Learning local image descriptors with deep Siamese and triplet convolutional networks by minimizing global loss functions. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 5385–5394. IEEE Computer Society (2016)

    Google Scholar 

  11. Kuwahara, T., et al.: Current status of artificial intelligence analysis for endoscopic ultrasonography. Dig. Endosc. 33(2), 298–305 (2021)

    Article  MathSciNet  Google Scholar 

  12. Li, Y., Li, J., Suhara, Y., Doan, A., Tan, W.C.: Deep entity matching with pre-trained language models. Proc. VLDB Endow. 14(1), 50–60 (2020)

    Article  Google Scholar 

  13. Li, Y., Li, J., Suhara, Y., Wang, J., Hirota, W., Tan, W.C.: Deep entity matching: challenges and opportunities. ACM J. Data Inf. Qual. 13(1), 1:1–1:17 (2021)

    Google Scholar 

  14. Liu, Y., et al.: Roberta: a robustly optimized BERT pretraining approach. CoRR abs/1907.11692 (2019)

    Google Scholar 

  15. Mudgal, S., et al.: Deep learning for entity matching: a design space exploration. In: Proceedings of the 2018 International Conference on Management of Data, SIGMOD, pp. 19–34. ACM (2018)

    Google Scholar 

  16. Ni, J., Li, J., McAuley, J.: Justifying recommendations using distantly-labeled reviews and fine-grained aspects. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 188–197 (2019)

    Google Scholar 

  17. Ristoski, P., Petrovski, P., Mika, P., Paulheim, H.: A machine learning approach for product matching and categorization. Semant. Web 9(5), 707–728 (2018)

    Article  Google Scholar 

  18. Sachan, A.: Detailed guide to understand and implement ResNets (2019). https://cv-tricks.com/keras/understand-implement-resnets/

  19. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. CoRR abs/1910.01108 (2019)

    Google Scholar 

  20. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the Tenth International World Wide Web Conference, WWW 10, pp. 285–295. ACM (2001)

    Google Scholar 

  21. Thirumuruganathan, S., et al.: Deep learning for blocking in entity matching: a design space exploration. Proc. VLDB Endow. 14(11), 2459–2472 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Hinneburg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le, M.H., Hinneburg, A. (2022). An Application of Learned Multi-modal Product Similarity to E-Commerce. In: Skopal, T., Falchi, F., Lokoč, J., Sapino, M.L., Bartolini, I., Patella, M. (eds) Similarity Search and Applications. SISAP 2022. Lecture Notes in Computer Science, vol 13590. Springer, Cham. https://doi.org/10.1007/978-3-031-17849-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17849-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17848-1

  • Online ISBN: 978-3-031-17849-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics