Skip to main content

Generalized Relative Neighborhood Graph (GRNG) for Similarity Search

  • Conference paper
  • First Online:
Similarity Search and Applications (SISAP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13590))

Included in the following conference series:

Abstract

Similarity search for information retrieval on a variety of datasets relies on a notion of neighborhood, frequently using binary relationships such as the kNN approach. We suggest, however, that the notion of a neighbor must recognize higher-order relationship, to capture neighbors in all directions. Proximity graphs, such as the Relative Neighbor Graphs (RNG), use trinary relationships which capture the notion of direction and have been successfully used in a number of applications. However, the current algorithms for computing the RNG, despite widespread use, are approximate and not scalable. This paper proposes a hierarchical approach and novel type of graph, the Generalized Relative Neighborhood Graph (GRNG) for use in a pivot layer that then guides the efficient and exact construction of the RNG of a set of exemplars. It also shows how to extend this to a multi-layer hierarchy which significantly improves over the state-of-the-art methods which can only construct an approximate RNG.

The support of NSF award 1910530 is gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chavez, E., et al.: Half-space proximal: a new local test for extracting a bounded dilation spanner of a unit disk graph. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 235–245. Springer, Heidelberg (2006). https://doi.org/10.1007/11795490_19

    Chapter  Google Scholar 

  2. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.L.: Searching in metric spaces. ACM Comput. Surv. (CSUR) 33(3), 273–321 (2001)

    Article  Google Scholar 

  3. Delaunay, B.: Sur la sphère vide. A la mémoire de Georges Voronoï. Bulletin de l’Académie des Sciences de l’URSS, pp. 793–800 (1934)

    Google Scholar 

  4. Dong, W., Moses, C., Li, K.: Efficient k-nearest neighbor graph construction for generic similarity measures. In: Proceedings of the 20th International Conference on World Wide Web, pp. 577–586 (2011)

    Google Scholar 

  5. Escalante, O., Pérez, T., Solano, J., Stojmenovic, I.: RNG-based searching and broadcasting algorithms over internet graphs and peer-to-peer computing systems. In: The 3rd ACS/IEEE International Conference on Computer Systems and Applications, p. 17. IEEE (2005)

    Google Scholar 

  6. Foster, C., Sevilmis, B., Kimia, B.: Generalized Relative Neighborhood Graph (GRNG) for Similarity Search. arXiv preprint (2022)

    Google Scholar 

  7. Fu, C., Xiang, C., Wang, C., Cai, D.: Fast approximate nearest neighbor search with the navigating spreading-out graph. Proc. VLDB Endow. 12(5), 461–474 (2019)

    Article  Google Scholar 

  8. Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation analysis. Syst. Zool. 18(3), 259–278 (1969)

    Article  Google Scholar 

  9. Goto, M., Ishida, R., Uchida, S.: Preselection of support vector candidates by relative neighborhood graph for large-scale character recognition. In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 306–310 (2015)

    Google Scholar 

  10. Hacid, H., Yoshida, T.: Incremental neighborhood graphs construction for multidimensional databases indexing. In: Kobti, Z., Wu, D. (eds.) AI 2007. LNCS (LNAI), vol. 4509, pp. 405–416. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72665-4_35

    Chapter  Google Scholar 

  11. Han, D., Han, C., Yang, Y., Liu, Y., Mao, W.: Pre-extracting method for SVM classification based on the non-parametric K-NN rule. In: 2008 19th International Conference on Pattern Recognition, pp. 1–4. IEEE (2008)

    Google Scholar 

  12. Jaromczyk, J.W., Toussaint, G.T.: Relative neighborhood graphs and their relatives. Proc. IEEE 80(9), 1502–1517 (1992)

    Article  Google Scholar 

  13. Katajainen, J., Nevalainen, O., Teuhola, J.: A linear expected-time algorithm for computing planar relative neighbourhood graphs. Inf. Process. Lett. 25(2), 77–86 (1987)

    Article  MathSciNet  Google Scholar 

  14. Kirkpatrick, D.G., Radke, J.D.: A framework for computational morphology. In: Machine Intelligence and Pattern Recognition, vol. 2, pp. 217–248. Elsevier (1985)

    Google Scholar 

  15. Rayar, F., Barrat, S., Bouali, F., Venturini, G.: An approximate proximity graph incremental construction for large image collections indexing. In: Esposito, F., Pivert, O., Hacid, M.-S., Raś, Z.W., Ferilli, S. (eds.) ISMIS 2015. LNCS (LNAI), vol. 9384, pp. 59–68. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25252-0_7

    Chapter  Google Scholar 

  16. Rayar, F., Barrat, S., Bouali, F., Venturini, G.: Incremental hierarchical indexing and visualisation of large image collections. In: 24th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (2016)

    Google Scholar 

  17. Rayar, F., Barrat, S., Bouali, F., Venturini, G.: A viewable indexing structure for the interactive exploration of dynamic and large image collections. ACM Trans. Knowl. Discov. Data (TKDD) 12(1), 1–26 (2018)

    Article  Google Scholar 

  18. Rayar, F., Goto, M., Uchida, S.: CNN training with graph-based sample preselection: application to handwritten character recognition. In: 2018 13th IAPR International Workshop on Document Analysis Systems (DAS), pp. 19–24. IEEE (2018)

    Google Scholar 

  19. Supowit, K.J.: The relative neighborhood graph, with an application to minimum spanning trees. J. ACM (JACM) 30(3), 428–448 (1983)

    Article  MathSciNet  Google Scholar 

  20. Tellez, E.S., Ruiz, G., Chavez, E., Graff, M.: Local search methods for fast near neighbor search. arXiv preprint arXiv:1705.10351 (2017)

  21. Toussaint, G.T.: The relative neighbourhood graph of a finite planar set. Pattern Recogn. 12(4), 261–268 (1980)

    Article  MathSciNet  Google Scholar 

  22. de Vries, N.J., Arefin, A.S., Mathieson, L., Lucas, B., Moscato, P.: Relative neighborhood graphs uncover the dynamics of social media engagement. In: Li, J., Li, X., Wang, S., Li, J., Sheng, Q.Z. (eds.) ADMA 2016. LNCS (LNAI), vol. 10086, pp. 283–297. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49586-6_19

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cole Foster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Foster, C., Sevilmis, B., Kimia, B. (2022). Generalized Relative Neighborhood Graph (GRNG) for Similarity Search. In: Skopal, T., Falchi, F., Lokoč, J., Sapino, M.L., Bartolini, I., Patella, M. (eds) Similarity Search and Applications. SISAP 2022. Lecture Notes in Computer Science, vol 13590. Springer, Cham. https://doi.org/10.1007/978-3-031-17849-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17849-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17848-1

  • Online ISBN: 978-3-031-17849-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics