Skip to main content

Clinical Trials Involving Chemotherapy-Based Nanocarriers in Cancer Therapy: State of the Art and Future Directions

  • Chapter
  • First Online:
Cancer Nanotechnology

Abstract

Despite significant achievements in cancer treatment, it remains a challenging burden, and there is limited success in the clinical therapy. In recent years, progress in nanotechnology provides plenty of tools to counteract cancer with innovative nanomedicines that can be exploited in intracellular drug delivery. Specifically, the design and development of nanomaterials, such as nanoparticles and hydrogels, aim at achieving smart nanosystems with great multifunctionality and therapeutic potential. In this context, advances in tailored biomaterials for drug delivery as cancer treatment include new strategies to overcome the obstacles and limitations usually encountered with traditional therapeutic agents, thereby reducing the lack of selectivity and side effects. Hence, a big effort is being invested in designing and developing more accurate strategies toward personalized medicine, which has emerged as a promising therapeutic approach with a wide potential to increase treatment outcomes and patient survival. In this chapter, we provide a comprehensive analysis and discuss the development of advanced nanocarriers involving chemotherapeutic agents in clinical trials against multiple types of cancer. We also focus on some reasons that could explain why some treatments fail in clinics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIDS:

Acquired immune deficiency syndrome;

ALL:

Lymphoblastic leukemia;

ARC:

International Agency for Research on Cancer;

AUC:

Area under the curve;

AuNPs:

Gold nanoparticles;

BBB:

Blood-brain barrier;

CAFs:

Cancer-associated fibroblasts

CD:

Cyclodextrin

CD-PEG:

Cyclodextrin-polyethylene glycol

Chol:

Cholesterol

DMPC:

1,2-Dimyris-toyl-sn-glycero-3-phosphocholine

DMPG:

1,2-Dimyristoyl-sn-glycero-3-phospho-(1’-racglycerol)

DNA:

Deoxyribonucleic acid

DOPC:

Palmitoyloleoylphosphatidylcholine

DOPS:

Dioleoylphosphatidylserine

DOTAP:

1,2-Dioleoyl-3-trimethylammonium propane

DPPC:

Dipalmitoylphosphatidylcholine

DPPG:

1,2-Dipalmitoyl-sn-glycero-3-phosphoglycerol;

DSPC:

Distearoylphosphatidylcholine

DSPE:

Distearoyl-sn-glycero-phosphoethanolamine

DSPG:

1,2-Distearoyl-sn-glycero-3-phosphoglycerol

ECM:

Extracellular matrix

EGFR:

Epidermal growth factor receptor

EMA:

European Medicines Agency

EPC:

Egg phosphatidylcholine

EPR:

Enhanced permeability and retention

FDA:

US Food and Drug Administration

HCC:

Hepatocellular carcinoma

HER2:

Human epidermal growth factor receptor 2

HIV:

Human immunodeficiency virus

HSA:

Human serum albumin

HSPC:

Hydrogenated soy phosphatidylcholine

KRAS:

Kirsten rat sarcoma viral oncogene homolog

KS:

Kaposi sarcoma

L-MTP-PE:

Muramyl tripeptide phosphatidylethanolamine

LNPs:

Lipid nanoparticles

LSAM:

Large surface area microparticle

MDP:

Muramyl dipeptide

MDR:

Multidrug resistance

MPEG:

Methoxy polyethylene glycol

MPPE:

Maleimidated palmitoyl phosphatidylethanolamine

MSPC:

1-Myristoyl-2-stearoyl-sn-glycero-3-phosphocholine

NGPE:

N-glutaryl phosphatidylethanolamine

NIPAM:

Poly(N-isopropylacrylamide)

NPs:

Nanoparticles

NSCLC:

Non-small cell lung cancer

PC:

Phosphatidylcholine

PE:

Polyethylene

PEG:

Polyethylene glycol

PEG2000-DSPE:

PEGylated distearoyl-sn-glycero-phosphoethanolamine

PFS:

Progression-free survival

PICN:

Paclitaxel injection concentrate for nanodispersion

PLA:

Polylactic acid

PLA2:

Phospholipase A2

PLGA:

Polylactide-co-glycolic acid

POPC:

Palmitoyloleoylphosphatidylcholine

PPE:

Palmar-plantar erythrodysesthesia

PSMA:

Prostate-specific membrane antigen

PVP:

Polyvinyl-pyrrolidone

RES:

Reticuloendothelial system

RFA:

Radiofrequency ablation

RNA:

Ribonucleic acid

SM:

Sphingomyelin

SPARC:

Sun Pharma Advanced Research Company, Ltd.

TAMs:

Tumor-associated macrophages

References

  • Agrawal, N. K., Allen, P., Song, Y. H., Wachs, R. A., Du, Y., Ellington, A. D., & Schmidt, C. E. (2020). Oligonucleotide-functionalized hydrogels for sustained release of small molecule (aptamer) therapeutics. Acta Biomaterialia, 102, 315–325.

    Article  CAS  Google Scholar 

  • Aguado, B. A., Grim, J. C., Rosales, A. M., Watson-Capps, J. J., & Anseth, K. S. (2018). Engineering precision biomaterials for personalized medicine. Science Translational Medicine, 10, eaam8645.

    Article  Google Scholar 

  • Ahmad, A., Wang, Y. F., & Ahmad, I. (2005). Separation of liposome-entrapped mitoxantrone from nonliposomal mitoxantrone in plasma: Pharmacokinetics in mice. Methods in Enzymology, 391, 176–185.

    Article  CAS  Google Scholar 

  • Alyautdin, R., Khalin, I., Nafeeza, M. I., Haron, M. H., & Kuznetsov, D. (2014). Nanoscale drug delivery systems and the blood-brain barrier. International Journal of Nanomedicine, 9, 795–811.

    CAS  Google Scholar 

  • Anselmo, A. C., & Mitragotri, S. (2019). Nanoparticles in the clinic: An update. Bioengineering & Translational Medicine, 4, e10143.

    Article  Google Scholar 

  • Anselmo, A. C., & Mitragotri, S. (2021). Nanoparticles in the clinic: An update post COVID-19 vaccines. Bioengineering Translational Medicine, 6, e10246.

    Article  CAS  Google Scholar 

  • Arias, L. S., Pessan, J. P., Vieira, A. P. M., Lima, T. M. T., Delbem, A. C. B., & Monteiro, D. R. (2018). Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics, 7(2), 46.

    Article  Google Scholar 

  • Autio, K. A., Dreicer, R., Anderson, J., Garcia, J. A., Alva, A., Hart, L. L., Milowsky, M. I., Posadas, E. M., Ryan, C. J., Graf, R. P., Dittamore, R., Schreiber, N. A., Summa, J. M., Youssoufian, H., Morris, M. J., & Scher, H. I. (2018). Safety and efficacy of BIND-014, a docetaxel nanoparticle targeting prostate-specific membrane antigen for patients with metastatic castration-resistant prostate cancer: A phase 2 clinical trial. JAMA Oncology, 4, 1344–1351.

    Article  Google Scholar 

  • Awasthi, R., Roseblade, A., Hansbro, P. M., Rathbone, M. J., Dua, K., & Bebawy, M. (2018). Nanoparticles in cancer treatment: Opportunities and obstacles. Current Drug Targets, 19, 1696–1709.

    Article  CAS  Google Scholar 

  • Baguley, B. C. (2010). Multidrug resistance in cancer. Methods in Molecular Biology, 596, 1–14.

    Article  CAS  Google Scholar 

  • Bai, L., Gao, C., Liu, Q., Yu, C., Zhang, Z., Cai, L., Yang, B., Qian, Y., Yang, J., & Liao, X. (2017). Research progress in modern structure of platinum complexes. European Journal of Medicinal Chemistry, 140, 349–382.

    Article  CAS  Google Scholar 

  • Barenholz, Y. (2012). Doxil®-the first FDA-approved nano-drug: Lessons learned. Journal of Controlled Release, 160, 117–134.

    Article  CAS  Google Scholar 

  • Baron, J. A. (2012). Screening for cancer with molecular markers: Progress comes with potential problems. Nature Reviews Cancer, 12, 368–371.

    Article  CAS  Google Scholar 

  • Baselga, J., Manikhas, A., Cortés, J., Llombart, A., Roman, L., Semiglazov, V. F., Byakhov, M., Lokanatha, D., Forenza, S., Goldfarb, R. H., Matera, J., Azarnia, N., Hudis, C. A., & Rozencweig, M. (2014). Phase III trial of nonpegylated liposomal doxorubicin in combination with trastuzumab and paclitaxel in HER2-positive metastatic breast cancer. Annals of Oncology, 25, 592–598.

    Article  CAS  Google Scholar 

  • Batist, G., Barton, J., Chaikin, P., Swenson, C., & Welles, L. (2002). Myocet (liposome-encapsulated doxorubicin citrate): A new approach in breast cancer therapy. Expert Opinion on Pharmacotherapy, 3, 1739–1751.

    Article  CAS  Google Scholar 

  • Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., & Rizzolio, F. (2019). The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules, 25(1), 112.

    Article  Google Scholar 

  • Bernstein, Z. P., Rios, A., Scadden, D., Groopman, J., Northfelt, D., Lang, W., Fischl, M., Cohen, P., Bock, A., & Gill, P. (1998). A multicenter, phase II/III study of Atragen™ (Tretinoin Liposomal) in patients with AIDS-associated Kaposi’s sarcoma. JAIDS Journal of Acquired Immune Deficiency Syndromes, 17, A24.

    Article  Google Scholar 

  • Bhagat, A., & Kleinerman, E. S. (2020). Anthracycline-induced cardiotoxicity: Causes, mechanisms, and prevention. Advances in Experimental Medicine and Biology, 1257, 181–192.

    Article  CAS  Google Scholar 

  • Binaschi, M., Zunino, F., & Capranico, G. (1995). Mechanism of action of DNA topoisomerase inhibitors. Stem Cells, 13, 369–379.

    Article  CAS  Google Scholar 

  • Blair, H. A. (2018). Daunorubicin/Cytarabine liposome: A review in acute myeloid leukaemia. Drugs, 78, 1903–1910.

    Article  Google Scholar 

  • Blanco, E., Shen, H., & Ferrari, M. (2015). Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature Biotechnology, 33, 941–951.

    Article  CAS  Google Scholar 

  • Bobo, D., Robinson, K. J., Islam, J., Thurecht, K. J., & Corrie, S. R. (2016). Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharmaceutical Research, 33, 2373–2387.

    Article  CAS  Google Scholar 

  • Bolger, G. T., Licollari, A., Tan, A., Greil, R., Vcelar, B., Greil-Ressler, S., Weiss, L., Schönlieb, C., Magnes, T., Radl, B., Majeed, M., & Sordillo, P. P. (2019). Pharmacokinetics of liposomal curcumin (Lipocurc™) infusion: Effect of co-medication in cancer patients and comparison with healthy individuals. Cancer Chemotherapy and Pharmacology, 83, 265–275.

    Article  CAS  Google Scholar 

  • Booser, D. J., Esteva, F. J., Rivera, E., Valero, V., Esparza-Guerra, L., Priebe, W., & Hortobagyi, G. N. (2002). Phase II study of liposomal annamycin in the treatment of doxorubicin-resistant breast cancer. Cancer Chemotherapy and Pharmacology, 50, 6–8.

    Article  CAS  Google Scholar 

  • Boulikas, T. (2009). Clinical overview on Lipoplatin: A successful liposomal formulation of cisplatin. Expert Opinion on Investigational Drugs, 18, 1197–1218.

    Article  CAS  Google Scholar 

  • Boulikas, T., Stathopoulos, G. P., Volakakis, N., & Vougiouka, M. (2005). Systemic Lipoplatin infusion results in preferential tumor uptake in human studies. Anticancer Research, 25, 3031–3039.

    CAS  Google Scholar 

  • Braal, C. L., de Bruijn, P., Atrafi, F., van Geijn, M., Rijcken, C. J. F., Mathijssen, R. H. J., & Koolen, S. L. W. (2018). A new method for the determination of total and released docetaxel from docetaxel-entrapped core-crosslinked polymeric micelles (CriPec®) by LC-MS/MS and its clinical application in plasma and tissues in patients with various tumours. Journal of Pharmaceutical and Biomedical Analysis, 161, 168–174.

    Article  CAS  Google Scholar 

  • Bradner, W. T. (2001). Mitomycin C: A clinical update. Cancer Treatment Reviews, 27, 35–50.

    Article  CAS  Google Scholar 

  • Brandes, A. A., Bartolotti, M., Tosoni, A., & Franceschi, E. (2016). Nitrosoureas in the management of malignant gliomas. Current Neurology and Neuroscience Reports, 16, 13.

    Article  Google Scholar 

  • Brandsma, D., Milojkovic Kerklaan, B., Diéras, V., Altintas, S., Anders, C. K., Arnedos Ballester, M., Gelderblom, H., Soetekouw, P. M. M. B., Gladdines, W., Lonnqvist, F., Jager, A., van Linde, M. E., Schellens, J., & Aftimos, P. (2014). Phase 1/2A study of glutathione pegylated liposomal doxorubicin (2b3-101) in patients with brain metastases (bm) from solid tumors or recurrent high grade gliomas (HGG). Annals of Oncology, 25, iv157.

    Article  Google Scholar 

  • Brewer, J. R., Morrison, G., Dolan, M. E., & Fleming, G. F. (2016). Chemotherapy-induced peripheral neuropathy: Current status and progress. Gynecologic Oncology, 140, 176–183.

    Article  CAS  Google Scholar 

  • Brown, S. B., Wang, L., Jungels, R. R., & Sharma, B. (2020). Effects of cartilage-targeting moieties on nanoparticle biodistribution in healthy and osteoarthritic joints. Acta Biomaterialia, 101, 469–483.

    Article  CAS  Google Scholar 

  • Bukowski, K., Kciuk, M., & Kontek, R. (2020). Mechanisms of multidrug resistance in cancer chemotherapy. International Journal of Molecular Sciences, 21(9), 3233.

    Article  CAS  Google Scholar 

  • Bulbake, U., Doppalapudi, S., Kommineni, N., & Khan, W. (2017). Liposomal formulations in clinical use: An updated review. Pharmaceutics, 9(2), 12.

    Article  Google Scholar 

  • Byrne, J. D., Betancourt, T., & Brannon-Peppas, L. (2008). Active targeting schemes for nanoparticle systems in cancer therapeutics. Advanced Drug Delivery Reviews, 60, 1615–1626.

    Article  CAS  Google Scholar 

  • Caballero, D., Abreu, C. M., Lima, A. C., Neves, N. N., Reis, R. L., & Kundu, S. C. (2022). Precision biomaterials in cancer theranostics and modelling. Biomaterials, 280, 121299.

    Article  CAS  Google Scholar 

  • Caldorera-Moore, M., Vela Ramirez, J. E., & Peppas, N. A. (2019). Transport and delivery of interferon-α through epithelial tight junctions via pH-responsive poly(methacrylic acid-grafted-ethylene glycol) nanoparticles. Journal of Drug Targeting, 27, 582–589.

    Article  CAS  Google Scholar 

  • Caliceti, P., & Matricardi, P. (2019). Advances in drug delivery and biomaterials: Facts and vision. Pharmaceutics, 11(1), 48.

    Article  CAS  Google Scholar 

  • Cao, J., Huang, D., & Peppas, N. A. (2020). Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Advanced Drug Delivery Reviews, 167, 170–188.

    Article  CAS  Google Scholar 

  • Carie, A., Rios-Doria, J., Costich, T., Burke, B., Slama, R., Skaff, H., & Sill, K. (2011). IT-141, a polymer micelle encapsulating SN-38, induces tumor regression in multiple colorectal cancer models. Journal of drug delivery, 2011, 869027.

    Article  Google Scholar 

  • Carvalho, C., Santos., R. X., Cardoso, S., Correia, S., Oliveira, P. J., Santos, M. S., & Moreira, P. I. (2009). Doxorubicin: The good, the bad and the ugly effect. Current Medicinal Chemistry, 16, 3267–3285.

    Article  CAS  Google Scholar 

  • Chamberlain, M. C., Kormanik, P., Howell, S. B., & Kim, S. (1995). Pharmacokinetics of intralumbar DTC-101 for the treatment of leptomeningeal metastases. Archives of Neurology, 52, 912–917.

    Article  CAS  Google Scholar 

  • Chang, Y. J., Chang, C. H., Chang, T. J., Yu, C. Y., Chen, L. C., Jan, M. L., Luo, T. Y., Lee, T. W., & Ting, G. (2007). Biodistribution, pharmacokinetics and microSPECT/CT imaging of 188Re-bMEDA-liposome in a C26 murine colon carcinoma solid tumor animal model. Anticancer Research, 27, 2217–2225.

    CAS  Google Scholar 

  • Chawla, S. P., Goel, S., Chow, W., Braiteh, F., Singh, A. S., Olson, J. E. G., Osada, A., Bobe, I., & Riedel, R. F. (2020). A phase 1b dose escalation trial of NC-6300 (nanoparticle epirubicin) in patients with advanced solid tumors or advanced, metastatic, or unresectable soft-tissue sarcoma. Clinical Cancer Research, 26, 4225–4232.

    Article  CAS  Google Scholar 

  • Chen, X., Wu, Y., Dong, H., Zhang, C. Y., & Zhang, Y. (2013). Platinum-based agents for individualized cancer treatment. Current Molecular Medicine, 13, 1603–1612.

    Article  CAS  Google Scholar 

  • Cheng, Q., Wei, T., Farbiak, L., Johnson, L. T., Dilliard, S. A., & Siegwart, D. J. (2020). Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nature Nanotechnology, 15, 313–320.

    Article  CAS  Google Scholar 

  • Chou, A. J., Gupta, R., Bell, M. D., Riewe, K. O., Meyers, P. A., & Gorlick, R. (2013). Inhaled lipid cisplatin (ILC) in the treatment of patients with relapsed/progressive osteosarcoma metastatic to the lung. Pediatric Blood & Cancer, 60, 580–586.

    Article  CAS  Google Scholar 

  • Costa-Silva, T. A., Costa, I. M., Biasoto, H. P., Lima, G. M., Silva, C., Pessoa, A., & Monteiro, G. (2020). Critical overview of the main features and techniques used for the evaluation of the clinical applicability of L-asparaginase as a biopharmaceutical to treat blood cancer. Blood Reviews, 43, 100651.

    Article  CAS  Google Scholar 

  • Creixell, M., & Peppas, N. A. (2012). Co-delivery of siRNA and therapeutic agents using nanocarriers to overcome cancer resistance. Nano Today, 7, 367–379.

    Article  CAS  Google Scholar 

  • D’Cruz, O., Piacente, M., Huang, T., Faxon, S., Trieu, V., & Desai, N. (2009). Sequence-dependent enhancement of antitumor activity of the vascular disrupting agent ABI-011 by paclitaxel and bevacizumab. Cancer Research, 69, 5638–5638.

    Google Scholar 

  • Daniel, D., & Crawford, J. (2006). Myelotoxicity from chemotherapy. Seminars in Oncology, 33, 74–85.

    Article  CAS  Google Scholar 

  • Das, A., & Ali, N. (2021). Nanovaccine: An emerging strategy. Expert Review of Vaccines, 20, 1273–1290.

    Article  CAS  Google Scholar 

  • Dasari, S., & Tchounwou, P. B. (2014). Cisplatin in cancer therapy: Molecular mechanisms of action. European Journal of Pharmacology, 740, 364–378.

    Article  CAS  Google Scholar 

  • Davis, M. E., Chen, Z. G., & Shin, D. M. (2008). Nanoparticle therapeutics: An emerging treatment modality for cancer. Nature Reviews Drug Discovery, 7, 771–782.

    Article  CAS  Google Scholar 

  • Deitcher, S., Cullis, P., Wong, M., & Choy, G. (2007). Vinorelbine liposomes injection results in greater tumor drug exposure compared to conventional vinorelbine in tumor-bearing nude mice. Molecular Cancer Therapeutics, 6, 109.

    Google Scholar 

  • Desai, N. (2016). Nanoparticle albumin-bound paclitaxel (Abraxane®). In M. Otagiri & V. T. G. Chuang (Eds.), Albumin in medicine: Pathological and clinical applications (pp. 101–119). Springer.

    Chapter  Google Scholar 

  • Diethelm-Varela, B., Ai, Y., Liang, D., & Xue, F. (2019). Nitrogen mustards as anticancer chemotherapies: Historic perspective, current developments and future trends. Current Topics in Medicinal Chemistry, 19, 691–712.

    Article  CAS  Google Scholar 

  • Dinndorf, P. A., Gootenberg, J., Cohen, M. H., Keegan, P., & Pazdur, R. (2007). FDA drug approval summary: Pegaspargase (Oncaspar®) for the first-line treatment of children with acute lymphoblastic leukemia (ALL). The Oncologist, 12, 991–998.

    Article  CAS  Google Scholar 

  • Dou, Y., Hynynen, K., & Allen, C. (2017). To heat or not to heat: Challenges with clinical translation of thermosensitive liposomes. Journal of Controlled Release, 249, 63–73.

    Article  CAS  Google Scholar 

  • Dragovich, T., Mendelson, D., Kurtin, S., Richardson, K., Von Hoff, D., & Hoos, A. (2006). A phase 2 trial of the liposomal DACH platinum L-NDDP in patients with therapy-refractory advanced colorectal cancer. Cancer Chemotherapy and Pharmacology, 58, 759–764.

    Article  CAS  Google Scholar 

  • Drummond, D. C., Meyer, O., Hong, K., Kirpotin, D. B., & Papahadjopoulos, D. (1999). Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacological Reviews, 51, 691–743.

    CAS  Google Scholar 

  • Duffaud, F., Borner, M., Chollet, P., Vermorken, J. B., Bloch, J., Degardin, M., Rolland, F., Dittrich, C., Baron, B., Lacombe, D., & Fumoleau, P. (2004). Phase II study of OSI-211 (liposomal lurtotecan) in patients with metastatic or loco-regional recurrent squamous cell carcinoma of the head and neck. An EORTC New Drug Development Group study. European Journal of Cancer, 40, 2748–2752.

    CAS  Google Scholar 

  • Duflos, A., Kruczynski, A., & Barret, J. M. (2002). Novel aspects of natural and modified vinca alkaloids. Current Medicinal Chemistry Anti-Cancer Agents, 2, 55–70.

    Article  CAS  Google Scholar 

  • Ernstoff, M. S., Ma, W. W., Tsai, F. Y.-C., Munster, P. N., Zhang, T., Kamoun, W., Pipas, J. M., Chen, S., Santillana, S., & Askoxylakis, V. (2018). A phase 1 study evaluating the safety, pharmacology and preliminary activity of MM-310 in patients with solid tumors. Journal of Clinical Oncology, 36, TPS2604.

    Article  Google Scholar 

  • Falzone, L., Salomone, S., & Libra, M. (2018). Evolution of cancer pharmacological treatments at the turn of the third millennium. Frontiers in Pharmacology, 9, 1300.

    Article  CAS  Google Scholar 

  • Fang, J., Nakamura, H., & Maeda, H. (2011). The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced Drug Delivery Reviews, 63, 136–151.

    Article  CAS  Google Scholar 

  • Farokhzad, O. C., & Langer, R. (2006). Nanomedicine: Developing smarter therapeutic and diagnostic modalities. Advanced Drug Delivery Reviews, 58, 1456–1459.

    Article  CAS  Google Scholar 

  • Fasol, U., Frost, A., Büchert, M., Arends, J., Fiedler, U., Scharr, D., Scheuenpflug, J., & Mross, K. (2012). Vascular and pharmacokinetic effects of EndoTAG-1 in patients with advanced cancer and liver metastasis. Annals of Oncology, 23, 1030–1036.

    Article  CAS  Google Scholar 

  • FDA Approves Onivyde Combo Regimen for Advanced Pancreatic Cancer. (2015). Oncology Times, 37, 8.

    Google Scholar 

  • Fenton, O. S., Olafson, K. N., Pillai, P. S., Mitchell, M. J., & Langer, R. (2018). Advances in biomaterials for drug delivery. Advanced Materials, 30(29), e1705328.

    Article  Google Scholar 

  • Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., & Bray, F. (2021). Cancer statistics for the year 2020: An overview. International Journal of Cancer, 149(4), 778–789.

    Article  CAS  Google Scholar 

  • Forssen, E. A., & Ross, M. E. (1994). Daunoxome® treatment of solid tumors: Preclinical and clinical investigations. Journal of Liposome Research, 4, 481–512.

    Article  Google Scholar 

  • Froudarakis, M., Hatzimichael, E., Kyriazopoulou, L., Lagos, K., Pappas, P., Tzakos, A. G., Karavasilis, V., Daliani, D., Papandreou, C., & Briasoulis, E. (2013). Revisiting bleomycin from pathophysiology to safe clinical use. Critical Reviews in Oncology/Hematology, 87, 90–100.

    Article  Google Scholar 

  • Gabizon, A., Catane, R., Uziely, B., Kaufman, B., Safra, T., Cohen, R., Martin, F., Huang, A., & Barenholz, Y. (1994). Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Research, 54, 987–992.

    CAS  Google Scholar 

  • Gabizon, A., Shmeeda, H., Tahover, E., Kornev, G., Patil, Y., Amitay, Y., Ohana, P., Sapir, E., & Zalipsky, S. (2020). Development of Promitil®, a lipidic prodrug of mitomycin c in PEGylated liposomes: From bench to bedside. Advanced Drug Delivery Reviews, 154–155, 13–26.

    Article  Google Scholar 

  • Gaillard, P. J., Appeldoorn, C. C., Dorland, R., van Kregten, J., Manca, F., Vugts, D. J., Windhorst, B., van Dongen, G. A., de Vries, H. E., Maussang, D., & van Tellingen, O. (2014). Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3-101). PLoS One, 9, e82331.

    Article  Google Scholar 

  • Galm, U., Hager, M. H., Van Lanen, S. G., Ju, J., Thorson, J. S., & Shen, B. (2005). Antitumor antibiotics: Bleomycin, enediynes, and mitomycin. Chemical Reviews, 105, 739–758.

    Article  CAS  Google Scholar 

  • Gelderblom, H., Verweij, J., Nooter, K., & Sparreboom, A. (2001). Cremophor EL: The drawbacks and advantages of vehicle selection for drug formulation. European Journal of Cancer, 37, 1590–1598.

    Article  CAS  Google Scholar 

  • Gil, L., Shepard, R. C., Silberman, S. L., Zak, E. M., & Priebe, W. (2019). Clinical efficacy of L-annamycin, a liposomal formulated non-cross-resistant and non-cardiotoxic anthracycline in relapsed/refractory AML patients. Blood, 134, 5147–5147.

    Article  Google Scholar 

  • Gill, P. S., Wernz, J., Scadden, D. T., Cohen, P., Mukwaya, G. M., von Roenn, J. H., Jacobs, M., Kempin, S., Silverberg, I., Gonzales, G., Rarick, M. U., Myers, A. M., Shepherd, F., Sawka, C., Pike, M. C., & Ross, M. E. (1996). Randomized phase III trial of liposomal daunorubicin versus doxorubicin, bleomycin, and vincristine in AIDS-related Kaposi’s sarcoma. Journal of Clinical Oncology, 14, 2353–2364.

    Article  CAS  Google Scholar 

  • Giraud, B., Hebert, G., Deroussent, A., Veal, G. J., Vassal, G., & Paci, A. (2010). Oxazaphosphorines: New therapeutic strategies for an old class of drugs. Expert Opinion on Drug Metabolism & Toxicology, 6, 919–938.

    Article  CAS  Google Scholar 

  • Girotti, A., Escalera-Anzola, S., Alonso-Sampedro, I., González-Valdivieso, J., & Arias, F. J. (2020a). Aptamer-functionalized natural protein-based polymers as innovative biomaterials. Pharmaceutics, 12(11), 1115.

    Article  CAS  Google Scholar 

  • Girotti, A., Gonzalez-Valdivieso, J., Santos, M., Martin, L., & Arias, F. J. (2020b). Functional characterization of an enzymatically degradable multi-bioactive elastin-like recombinamer. International Journal of Biological Macromolecules, 164, 1640–1648.

    Article  CAS  Google Scholar 

  • Gonzalez-Valdivieso, J., Borrego, B., Girotti, A., Moreno, S., Brun, A., Bermejo-Martin, J. F., & Arias, F. J. (2020). A DNA vaccine delivery platform based on Elastin-Like recombinamer nanosystems for Rift Valley fever virus. Molecular Pharmaceutics, 17, 1608–1620.

    Article  CAS  Google Scholar 

  • Gonzalez-Valdivieso, J., Garcia-Sampedro, A., Hall, A. R., Girotti, A., Arias, F. J., Pereira, S. P., & Acedo, P. (2021a). Smart nanoparticles as advanced anti-Akt kinase delivery systems for pancreatic cancer therapy. ACS Applied Materials & Interfaces, 13, 55790–55805.

    Article  CAS  Google Scholar 

  • Gonzalez-Valdivieso, J., Girotti, A., Schneider, J., & Arias, F. J. (2021b). Advanced nanomedicine and cancer: Challenges and opportunities in clinical translation. International Journal of Pharmaceutics, 599, 120438.

    Article  CAS  Google Scholar 

  • Green, M. R., Manikhas, G. M., Orlov, S., Afanasyev, B., Makhson, A. M., Bhar, P., & Hawkins, M. J. (2006). Abraxane, a novel Cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Annals of Oncology, 17, 1263–1268.

    Article  CAS  Google Scholar 

  • Greene, J., & Hennessy, B. (2015). The role of anthracyclines in the treatment of early breast cancer. Journal of Oncology Pharmacy Practice, 21, 201–212.

    Article  CAS  Google Scholar 

  • Greish, K. (2010). Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods in Molecular Biology, 624, 25–37.

    Article  CAS  Google Scholar 

  • Grothey, A. (2003). Oxaliplatin-safety profile: Neurotoxicity. Seminars in Oncology, 30, 5–13.

    Article  CAS  Google Scholar 

  • Hamaguchi, T., Matsumura, Y., Nakanishi, Y., Muro, K., Yamada, Y., Shimada, Y., Shirao, K., Niki, H., Hosokawa, S., Tagawa, T., & Kakizoe, T. (2004). Antitumor effect of MCC-465, pegylated liposomal doxorubicin tagged with newly developed monoclonal antibody GAH, in colorectal cancer xenografts. Cancer Science, 95, 608–613.

    Article  CAS  Google Scholar 

  • Hamaguchi, T., Matsumura, Y., Suzuki, M., Shimizu, K., Goda, R., Nakamura, I., Nakatomi, I., Yokoyama, M., Kataoka, K., & Kakizoe, T. (2005). NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. British Journal of Cancer, 92, 1240–1246.

    Article  CAS  Google Scholar 

  • Hamaguchi, T., Kato, K., Yasui, H., Morizane, C., Ikeda, M., Ueno, H., Muro, K., Yamada, Y., Okusaka, T., Shirao, K., Shimada, Y., Nakahama, H., & Matsumura, Y. (2007). A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. British Journal of Cancer, 97, 170–176.

    Article  CAS  Google Scholar 

  • Han, W., Chilkoti, A., & López, G. P. (2017). Self-assembled hybrid elastin-like polypeptide/silica nanoparticles enable triggered drug release. Nanoscale, 9, 6178–6186.

    Article  CAS  Google Scholar 

  • Harrington, K. J., Mohammadtaghi, S., Uster, P. S., Glass, D., Peters, A. M., Vile, R. G., & Stewart, J. S. (2001). Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clinical Cancer Research, 7, 243–254.

    CAS  Google Scholar 

  • He, C., Yue, H., Xu, L., Liu, Y., Song, Y., Tang, C., & Yin, C. (2020). siRNA release kinetics from polymeric nanoparticles correlate with RNAi efficiency and inflammation therapy via oral delivery. Acta Biomaterialia, 103, 213–222.

    Article  CAS  Google Scholar 

  • Helary, C., & Desimone, M. F. (2015). Recent advances in biomaterials for tissue engineering and controlled drug delivery. Current Pharmaceutical Biotechnology, 16, 635–645.

    Article  CAS  Google Scholar 

  • Ho, D., Quake, S. R., McCabe, E. R. B., Chng, W. J., Chow, E. K., Ding, X., Gelb, B. D., Ginsburg, G. S., Hassenstab, J., Ho, C. M., Mobley, W. C., Nolan, G. P., Rosen, S. T., Tan, P., Yen, Y., & Zarrinpar, A. (2020). Enabling technologies for personalized and precision medicine. Trends in Biotechnology, 38, 497–518.

    Article  CAS  Google Scholar 

  • Howes, P. D., Chandrawati, R., & Stevens, M. M. (2014). Bionanotechnology. Colloidal nanoparticles as advanced biological sensors. Science, 346, 1247390.

    Article  Google Scholar 

  • https://www.annalsofoncology.org/article/S0923-7534(19)585702/fulltext#relatedArticles. Accessed 12 Dec 2021.

  • https://www.iarc.who.int/. Accessed 27 Nov 2021.

  • Huang, K. W., Hsu, F. F., Qiu, J. T., Chern, G. J., Lee, Y. A., Chang, C. C., Huang, Y. T., Sung, Y. C., Chiang, C. C., Huang, R. L., Lin, C. C., Dinh, T. K., Huang, H. C., Shih, Y. C., Alson, D., Lin, C. Y., Lin, Y. C., Chang, P. C., Lin, S. Y., & Chen, Y. (2020). Highly efficient and tumor-selective nanoparticles for dual-targeted immunogene therapy against cancer. Science Advances, 6, eaax5032.

    Article  CAS  Google Scholar 

  • Hwang, J., Sullivan, M. O., & Kiick, K. L. (2020). Targeted drug delivery via the use of ECM-mimetic materials. Frontiers in Bioengineering and Biotechnology, 8, 69.

    Article  Google Scholar 

  • Islam, R., Maeda, H., & Fang, J. (2021). Factors affecting the dynamics and heterogeneity of the EPR effect: Pathophysiological and pathoanatomic features, drug formulations and physicochemical factors. Expert Opinion on Drug Delivery, 1–14.

    Google Scholar 

  • Jabir, N. R., Anwar, K., Firoz, C. K., Oves, M., Kamal, M. A., & Tabrez, S. (2018). An overview on the current status of cancer nanomedicines. Current Medical Research and Opinion, 34, 911–921.

    Article  CAS  Google Scholar 

  • Jain, R. K., & Stylianopoulos, T. (2010). Delivering nanomedicine to solid tumors. Nature Reviews Clinical Oncology, 7, 653–664.

    Article  CAS  Google Scholar 

  • Jain, M. M., Gupte, S. U., Patil, S. G., Pathak, A. B., Deshmukh, C. D., Bhatt, N., Haritha, C., Govind, B. K., Bondarde, S. A., Digumarti, R., Bajpai, J., Kumar, R., Bakshi, A. V., Bhattacharya, G. S., Patil, P., Subramanian, S., Vaid, A. K., Desai, C. J., Khopade, A., Chimote, G., Bapsy, P. P., & Bhowmik, S. (2016). Paclitaxel injection concentrate for nanodispersion versus nab-paclitaxel in women with metastatic breast cancer: A multicenter, randomized, comparative phase II/III study. Breast Cancer Research & Treatment, 156, 125–134.

    Article  CAS  Google Scholar 

  • Jarrar, M., Gaynon, P. S., Periclou, A. P., Fu, C., Harris, R. E., Stram, D., Altman, A., Bostrom, B., Breneman, J., Steele, D., Trigg, M., Zipf, T., & Avramis, V. I. (2006). Asparagine depletion after pegylated E. coli asparaginase treatment and induction outcome in children with acute lymphoblastic leukemia in first bone marrow relapse: A Children’s Oncology Group study (CCG-1941). Pediatric Blood & Cancer, 47, 141–146.

    Article  Google Scholar 

  • Jiang, N., Wang, X., Yang, Y., & Dai, W. (2006). Advances in mitotic inhibitors for cancer treatment. Mini Reviews in Medicinal Chemistry, 6, 885–895.

    Article  CAS  Google Scholar 

  • Kager, L., Pötschger, U., & Bielack, S. (2010). Review of mifamurtide in the treatment of patients with osteosarcoma. Therapeutics and Clinical Risk Management, 6, 279–286.

    Article  CAS  Google Scholar 

  • Kato, K., Chin, K., Yoshikawa, T., Yamaguchi, K., Tsuji, Y., Esaki, T., Sakai, K., Kimura, M., Hamaguchi, T., Shimada, Y., Matsumura, Y., & Ikeda, R. (2012). Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Investigational New Drugs, 30, 1621–1627.

    Article  CAS  Google Scholar 

  • Kaye, S. B. (1998). New antimetabolites in cancer chemotherapy and their clinical impact. British Journal of Cancer, 78, 1–7.

    Article  CAS  Google Scholar 

  • Kemp, J. A., & Kwon, Y. J. (2021). Cancer nanotechnology: Current status and perspectives. Nano Convergence, 8, 34.

    Article  CAS  Google Scholar 

  • Kim, T.-Y., Kim, D.-W., Chung, J.-Y., Shin, S. G., Kim, S.-C., Heo, D. S., Kim, N. K., & Bang, Y.-J. (2004). Phase I and pharmacokinetic study of Genexol-PM, a Cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clinical Cancer Research, 10, 3708–3716.

    Article  CAS  Google Scholar 

  • Kim, S.-B., Zhang, Q., Sun, T., Seo, J. H., Lee, K. S., Kim, T.-Y., Tong, Z., Park, K. H., Moon, Y. W., Wang, S., Li, W., Yang, Y., Wang, J., Wang, X., Choi, J., Lee, J. E., Yoon, K. E., Chung, S., Xu, B., & Sohn, J. (2020). [OPTIMAL 3] A phase III trial to evaluate the efficacy and safety of DHP107 (Liporaxel, oral paclitaxel) compared to Taxol (IV paclitaxel) as first line therapy in patients with recurrent or metastatic HER2 negative breast cancer (BC) (NCT03315364). Journal of Clinical Oncology, 38, TPS1106.

    Article  Google Scholar 

  • Kirpotin, D. B., Tipparaju, S., Huang, Z. R., Kamoun, W. S., Pien, C., Kornaga, T., Oyama, S., Olivier, K., Marks, J. D., Koshkaryev, A., Schihl, S. S., Fetterly, G., Schoeberl, B., Noble, C., Hayes, M., & Drummond, D. C. (2016). Abstract 3912: MM-310, a novel EphA2-targeted docetaxel nanoliposome. Cancer Research, 76, 3912–3912.

    Article  Google Scholar 

  • Knight, F. C., Gilchuk, P., Kumar, A., Becker, K. W., Sevimli, S., Jacobson, M. E., Suryadevara, N., Wang-Bishop, L., Boyd, K. L., Crowe, J. E., Joyce, S., & Wilson, J. T. (2019). Mucosal immunization with a pH-responsive nanoparticle vaccine induces protective CD8(+) lung-resident memory T cells. ACS Nano, 13, 10939–10960.

    Article  CAS  Google Scholar 

  • Koo, M. M., Swann, R., McPhail, S., Abel, G. A., Elliss-Brookes, L., Rubin, G. P., & Lyratzopoulos, G. (2020). Presenting symptoms of cancer and stage at diagnosis: Evidence from a cross-sectional, population-based study. The Lancet Oncology, 21, 73–79.

    Article  Google Scholar 

  • Koukourakis, M. I., Koukouraki, S., Giatromanolaki, A., Kakolyris, S., Georgoulias, V., Velidaki, A., Archimandritis, S., & Karkavitsas, N. N. (2000). High intratumoral accumulation of stealth liposomal doxorubicin in sarcomas–rationale for combination with radiotherapy. Acta Oncologica, 39, 207–211.

    Article  CAS  Google Scholar 

  • Kraut, E. H., Fishman, M. N., Lorusso, P. M., Gordon, M. S., Rubin, E. H., Haas, A., Fetterly, G. J., Cullinan, P., Dul, J. L., & Steinberg, J. L. (2005). Final results of a phase I study of liposome encapsulated SN-38 (LE-SN38): Safety, pharmacogenomics, pharmacokinetics, and tumor response. Journal of Clinical Oncology, 23, 2017–2017.

    Article  Google Scholar 

  • Kulkarni, J. A., Witzigmann, D., Leung, J., Tam, Y. Y. C., & Cullis, P. R. (2019). On the role of helper lipids in lipid nanoparticle formulations of siRNA. Nanoscale, 11, 21733–21739.

    Article  CAS  Google Scholar 

  • Kushwah, V., Katiyar, S. S., Agrawal, A. K., Gupta, R. C., & Jain, S. (2018). Co-delivery of docetaxel and gemcitabine using PEGylated self-assembled stealth nanoparticles for improved breast cancer therapy. Nanomedicine, 14, 1629–1641.

    Article  CAS  Google Scholar 

  • Laginha, K. M., Verwoert, S., Charrois, G. J., & Allen, T. M. (2005). Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clinical Cancer Research, 11, 6944–6949.

    Article  CAS  Google Scholar 

  • Lammers, T., Aime, S., Hennink, W. E., Storm, G., & Kiessling, F. (2011). Theranostic nanomedicine. Accounts of Chemical Research, 44, 1029–1038.

    Article  CAS  Google Scholar 

  • Lancet, J. E., Uy, G. L., Cortes, J. E., Newell, L. F., Lin, T. L., Ritchie, E. K., Stuart, R. K., Strickland, S. A., Hogge, D., Solomon, S. R., Stone, R. M., Bixby, D. L., Kolitz, J. E., Schiller, G. J., Wieduwilt, M. J., Ryan, D. H., Hoering, A., Chiarella, M., Louie, A. C., & Medeiros, B. C. (2016). Final results of a phase III randomized trial of CPX-351 versus 7+3 in older patients with newly diagnosed high risk (secondary) AML. Journal of Clinical Oncology, 34, 7000–7000.

    Article  Google Scholar 

  • Lancet, J. E., Uy, G. L., Cortes, J. E., Newell, L. F., Lin, T. L., Ritchie, E. K., Stuart, R. K., Strickland, S. A., Hogge, D., Solomon, S. R., Stone, R. M., Bixby, D. L., Kolitz, J. E., Schiller, G. J., Wieduwilt, M. J., Ryan, D. H., Hoering, A., Banerjee, K., Chiarella, M., Louie, A. C., & Medeiros, B. C. (2018). CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. Journal of Clinical Oncology, 36, 2684–2692.

    Article  CAS  Google Scholar 

  • Lawson, R., Staatz, C. E., Fraser, C. J., & Hennig, S. (2021). Review of the pharmacokinetics and pharmacodynamics of intravenous busulfan in paediatric patients. Clinical Pharmacokinetics, 60, 17–51.

    Article  CAS  Google Scholar 

  • Le, Z., Chen, Y., Han, H., Tian, H., Zhao, P., Yang, C., He, Z., Liu, L., Leong, K. W., Mao, H. Q., Liu, Z., & Chen, Y. (2018). Hydrogen-bonded tannic acid-based anticancer nanoparticle for enhancement of oral chemotherapy. ACS Applied Materials & Interfaces, 10, 42186–42197.

    Article  CAS  Google Scholar 

  • Lee, S. W., Yun, M. H., Jeong, S. W., In, C. H., Kim, J. Y., Seo, M. H., Pai, C. M., & Kim, S. O. (2011). Development of docetaxel-loaded intravenous formulation, Nanoxel-PM™ using polymer-based delivery system. Journal of Controlled Release, 155, 262–271.

    Article  CAS  Google Scholar 

  • Lee, H., Park, S., Kang, J. E., Lee, H. M., Kim, S. A., & Rhie, S. J. (2020). Efficacy and safety of nanoparticle-albumin-bound paclitaxel compared with solvent-based taxanes for metastatic breast cancer: A meta-analysis. Scientific Reports, 10, 530.

    Article  CAS  Google Scholar 

  • Leonard, R. C. F., Williams, S., Tulpule, A., Levine, A. M., & Oliveros, S. Y. (2009). Improving the therapeutic index of anthracycline chemotherapy: Focus on liposomal doxorubicin (Myocet). Breast, 18(4), 218–224.

    Article  CAS  Google Scholar 

  • Lepareur, N., Lacœuille, F., Bouvry, C., Hindré, F., Garcion, E., Chérel, M., Noiret, N., Garin, E., & Knapp, F. F. R. (2019). Rhenium-188 labeled radiopharmaceuticals: Current clinical applications in oncology and promising perspectives. Frontiers in Medicine, 6, 132.

    Article  Google Scholar 

  • Leung, A. K., Tam, Y. Y., Chen, S., Hafez, I. M., & Cullis, P. R. (2015). Microfluidic mixing: A general method for encapsulating macromolecules in lipid nanoparticle systems. The Journal of Physical Chemistry B, 119, 8698–8706.

    Article  CAS  Google Scholar 

  • Liang, X. J., Chen, C., Zhao, Y., & Wang, P. C. (2010). Circumventing tumor resistance to chemotherapy by nanotechnology. Methods in Molecular Biology, 596, 467–488.

    Article  CAS  Google Scholar 

  • Liu, Y., Li, K., Liu, B., & Feng, S. S. (2010). A strategy for precision engineering of nanoparticles of biodegradable copolymers for quantitative control of targeted drug delivery. Biomaterials, 31, 9145–9155.

    Article  CAS  Google Scholar 

  • Liu, X., Li, C., Lv, J., Huang, F., An, Y., Shi, L., & Ma, R. (2020). Glucose and H2O2 dual-responsive polymeric micelles for the self-regulated release of insulin. ACS Applied Biomaterials, 3, 1598–1606.

    Article  CAS  Google Scholar 

  • Luginbuhl, K. M., Mozhdehi, D., Dzuricky, M., Yousefpour, P., Huang, F. C., Mayne, N. R., Buehne, K. L., & Chilkoti, A. (2017). Recombinant synthesis of hybrid lipid-peptide polymer fusions that self-assemble and encapsulate hydrophobic drugs. Angewandte Chemie, 56, 13979–13984.

    Article  CAS  Google Scholar 

  • Ma, W. W., Zhu, M., Lam, E. T., Diamond, J. R., Dy, G. K., Fisher, G. A., Goff, L. W., Alberts, S., Bui, L. A., Sanghal, A., Kothekar, M., Khopade, A., Chimote, G., Faulkner, R., Eckhardt, S. G., Adjei, A. A., & Jimeno, A. (2021). A phase I pharmacokinetic and safety study of Paclitaxel Injection Concentrate for Nano-dispersion (PICN) alone and in combination with carboplatin in patients with advanced solid malignancies and biliary tract cancers. Cancer Chemotherapy and Pharmacology, 87, 779–788.

    Article  CAS  Google Scholar 

  • Madaan, A., Singh, P., Awasthi, A., Verma, R., Singh, A. T., Jaggi, M., Mishra, S. K., Kulkarni, S., & Kulkarni, H. (2013). Efficiency and mechanism of intracellular paclitaxel delivery by novel nanopolymer-based tumor-targeted delivery system, Nanoxel(TM). Clinical & Translational Oncology, 15, 26–32.

    Article  CAS  Google Scholar 

  • Madamsetty, V. S., Mukherjee, A., & Mukherjee, S. (2019). Recent trends of the bio-inspired nanoparticles in cancer theranostics. Frontiers in Pharmacology, 10, 1264.

    Article  CAS  Google Scholar 

  • Mahalingam, D., Nemunaitis, J. J., Malik, L., Sarantopoulos, J., Weitman, S., Sankhala, K., Hart, J., Kousba, A., Gallegos, N. S., Anderson, G., Charles, J., Rogers, J. M., Senzer, N. N., & Mita, A. C. (2014). Phase I study of intravenously administered ATI-1123, a liposomal docetaxel formulation in patients with advanced solid tumors. Cancer Chemotherapy and Pharmacology, 74, 1241–1250.

    Article  CAS  Google Scholar 

  • Makadia, H. K., & Siegel, S. J. (2011). Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 3, 1377–1397.

    Article  CAS  Google Scholar 

  • Malhotra, V., & Perry, M. C. (2003). Classical chemotherapy: Mechanisms, toxicities and the therapeutic window. Cancer Biology & Therapy, 2, S2–S4.

    Article  Google Scholar 

  • Mamot, C., Ritschard, R., Wicki, A., Stehle, G., Dieterle, T., Bubendorf, L., Hilker, C., Deuster, S., Herrmann, R., & Rochlitz, C. (2012). Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: A phase 1 dose-escalation study. The Lancet Oncology, 13, 1234–1241.

    Article  CAS  Google Scholar 

  • Man, F., Lammers, T., & de Rosales, R. T. M. (2018). Imaging nanomedicine-based drug delivery: A review of clinical studies. Molecular Imaging and Biology, 20, 683–695.

    Article  Google Scholar 

  • Manshian, B. B., Jiménez, J., Himmelreich, U., & Soenen, S. J. (2017). Personalized medicine and follow-up of therapeutic delivery through exploitation of quantum dot toxicity. Biomaterials, 127, 1–12.

    Article  CAS  Google Scholar 

  • Mantripragada, S. (2002). A lipid based depot (DepoFoam technology) for sustained release drug delivery. Progress in Lipid Research, 41, 392–406.

    Article  CAS  Google Scholar 

  • Martino, E., Casamassima, G., Castiglione, S., Cellupica, E., Pantalone, S., Papagni, F., Rui, M., Siciliano, A. M., & Collina, S. (2018). Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead. Bioorganic & Medicinal Chemistry Letters, 28, 2816–2826.

    Article  Google Scholar 

  • Matsumoto, Y., Nichols, J. W., Toh, K., Nomoto, T., Cabral, H., Miura, Y., Christie, R. J., Yamada, N., Ogura, T., Kano, M. R., Matsumura, Y., Nishiyama, N., Yamasoba, T., Bae, Y. H., & Kataoka, K. (2016). Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery. Nature Nanotechnology, 11, 533–538.

    Article  CAS  Google Scholar 

  • Matsumoto, T., Komori, T., Yoshino, Y., Ioroi, T., Kitahashi, T., Kitahara, H., Ono, K., Higuchi, T., Sakabe, M., Kori, H., Kano, M., Hori, R., Kato, Y., & Hagiwara, S. (2021). A liposomal gemcitabine, FF-10832, improves plasma stability, tumor targeting, and antitumor efficacy of gemcitabine in pancreatic cancer xenograft models. Pharmaceutical Research, 38, 1093–1106.

    Article  CAS  Google Scholar 

  • Matsumura, Y., & Maeda, H. (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Research, 46, 6387–6392.

    CAS  Google Scholar 

  • Matsumura, Y., Gotoh, M., Muro, K., Yamada, Y., Shirao, K., Shimada, Y., Okuwa, M., Matsumoto, S., Miyata, Y., Ohkura, H., Chin, K., Baba, S., Yamao, T., Kannami, A., Takamatsu, Y., Ito, K., & Takahashi, K. (2004). Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Annals of Oncology, 15, 517–525.

    Article  CAS  Google Scholar 

  • Maulhardt, H. A., Marin, A. M., & diZerega, G. S. (2020). Intratumoral submicron particle docetaxel inhibits syngeneic Renca renal cancer growth and increases CD4+, CD8+, and Treg levels in peripheral blood. Investigational New Drugs, 38, 1618–1626.

    Article  CAS  Google Scholar 

  • Maulhardt, H., Marin, A., Hesseltine, H., & diZerega, G. (2021). Submicron particle docetaxel intratumoral injection in combination with anti-mCTLA-4 into 4T1-Luc orthotopic implants reduces primary tumor and metastatic pulmonary lesions. Medical Oncology, 38, 106.

    Article  CAS  Google Scholar 

  • Meyers, P. A., Schwartz, C. L., Krailo, M. D., Healey, J. H., Bernstein, M. L., Betcher, D., Ferguson, W. S., Gebhardt, M. C., Goorin, A. M., Harris, M., Kleinerman, E., Link, M. P., Nadel, H., Nieder, M., Siegal, G. P., Weiner, M. A., Wells, R. J., Womer, R. B., & Grier, H. E. (2008). Osteosarcoma: The addition of muramyl tripeptide to chemotherapy improves overall survival–a report from the Children’s Oncology Group. Journal of Clinical Oncology, 26, 633–638.

    Article  CAS  Google Scholar 

  • Miller, K., Cortes, J., Hurvitz, S. A., Krop, I. E., Tripathy, D., Verma, S., Riahi, K., Reynolds, J. G., Wickham, T. J., Molnar, I., & Yardley, D. A. (2016). HERMIONE: A randomized phase 2 trial of MM-302 plus trastuzumab versus chemotherapy of physician’s choice plus trastuzumab in patients with previously treated, anthracycline-naïve, HER2-positive, locally advanced/metastatic breast cancer. BMC Cancer, 16, 352.

    Article  Google Scholar 

  • Minelli, C., Lowe, S. B., & Stevens, M. M. (2010). Engineering nanocomposite materials for cancer therapy. Small, 6, 2336–2357.

    Article  CAS  Google Scholar 

  • Mitchell, E. P. (2006). Gastrointestinal toxicity of chemotherapeutic agents. Seminars in Oncology, 33, 106–120.

    Article  CAS  Google Scholar 

  • Mitchell, E. P., & Schein, P. S. (1986). Contributions of nitrosoureas to cancer treatment. Cancer Treatment Reports, 70, 31–41.

    CAS  Google Scholar 

  • Mitchell, M. J., Jain, R. K., & Langer, R. (2017). Engineering and physical sciences in oncology: Challenges and opportunities. Nature Reviews Cancer, 17, 659–675.

    Article  CAS  Google Scholar 

  • Mitchell, M. J., Billingsley, M. M., Haley, R. M., Wechsler, M. E., Peppas, N. A., & Langer, R. (2021). Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 20, 101–124.

    Article  CAS  Google Scholar 

  • Moody, C. L., & Wheelhouse, R. T. (2014). The medicinal chemistry of imidazotetrazine prodrugs. Pharmaceuticals, 7, 797–838.

    Article  CAS  Google Scholar 

  • Moore, A., & Pinkerton, R. (2009). Vincristine: Can its therapeutic index be enhanced? Pediatric Blood & Cancer, 53, 1180–1187.

    Article  Google Scholar 

  • More, G. S., Thomas, A. B., Chitlange, S. S., Nanda, R. K., & Gajbhiye, R. L. (2019). Nitrogen mustards as alkylating agents: A review on chemistry, mechanism of action and current USFDA status of drugs. Anti-Cancer Agents in Medicinal Chemistry, 19, 1080–1102.

    Article  CAS  Google Scholar 

  • Mosca, L., Ilari, A., Fazi, F., Assaraf, Y. G., & Colotti, G. (2021). Taxanes in cancer treatment: Activity, chemoresistance and its overcoming. Drug Resistance Updates, 54, 100742.

    Article  CAS  Google Scholar 

  • Moudi, M., Go, R., Yien, C. Y., & Nazre, M. (2013). Vinca alkaloids. International Journal of Preventive Medicine, 4, 1231–1235.

    Google Scholar 

  • Muggia, F., & Kudlowitz, D. (2014). Novel taxanes. Anti-Cancer Drugs, 25, 593–598.

    Article  CAS  Google Scholar 

  • Mullany, S., Miller, D. S., Robison, K., Levinson, K., Lee, Y. C., Yamada, S. D., Walker, J., Markman, M., Marin, A., Mast, P., & diZerega, G. (2020). Phase II study of intraperitoneal submicron particle paclitaxel (SPP) plus IV carboplatin and paclitaxel in patients with epithelial ovarian cancersurgery. Gynecologic Oncology Reports, 34, 100627.

    Article  Google Scholar 

  • Munster, P., Krop, I. E., LoRusso, P., Ma, C., Siegel, B. A., Shields, A. F., Molnár, I., Wickham, T. J., Reynolds, J., Campbell, K., Hendriks, B. S., Adiwijaya, B. S., Geretti, E., Moyo, V., & Miller, K. D. (2018). Safety and pharmacokinetics of MM-302, a HER2-targeted antibody-liposomal doxorubicin conjugate, in patients with advanced HER2-positive breast cancer: A phase 1 dose-escalation study. British Journal of Cancer, 119, 1086–1093.

    Article  CAS  Google Scholar 

  • Mylonakis, N., Athanasiou, A., Ziras, N., Angel, J., Rapti, A., Lampaki, S., Politis, N., Karanikas, C., & Kosmas, C. (2010). Phase II study of liposomal cisplatin (Lipoplatin) plus gemcitabine versus cisplatin plus gemcitabine as first line treatment in inoperable (stage IIIB/IV) non-small cell lung cancer. Lung Cancer, 68, 240–247.

    Article  CAS  Google Scholar 

  • Ngan, Y. H., & Gupta, M. (2016). A comparison between liposomal and nonliposomal formulations of doxorubicin in the treatment of cancer: An updated review. Archives of Pharmacy Practice, 7(1), 1–13.

    Article  Google Scholar 

  • Norouzi, M., Amerian, M., Amerian, M., & Atyabi, F. (2020). Clinical applications of nanomedicine in cancer therapy. Drug Discovery Today, 25, 107–125.

    Article  CAS  Google Scholar 

  • Northfelt, D. W., Dezube, B. J., Thommes, J. A., Miller, B. J., Fischl, M. A., Friedman-Kien, A., Kaplan, L. D., Du Mond, C., Mamelok, R. D., & Henry, D. H. (1998). Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: Results of a randomized phase III clinical trial. Journal of Clinical Oncology, 16, 2445–2451.

    Article  CAS  Google Scholar 

  • Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. L. (2012). Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology, 52, 1213–1225.

    Article  CAS  Google Scholar 

  • Park, H., Otte, A., & Park, K. (2021). Evolution of drug delivery systems: From 1950 to 2020 and beyond. Journal of Controlled Release, 342, 53–65.

    Article  Google Scholar 

  • Peres, C., Matos, A. I., Moura, L. I. F., Acúrcio, R. C., Carreira, B., Pozzi, S., Vaskovich-Koubi, D., Kleiner, R., Satchi-Fainaro, R., & Florindo, H. F. (2021). Preclinical models and technologies to advance nanovaccine development. Advanced Drug Delivery Reviews, 172, 148–182.

    Article  CAS  Google Scholar 

  • Peters, G. J., Schornagel, J. H., & Milano, G. A. (1993). Clinical pharmacokinetics of anti-metabolites. Cancer Surveys, 17, 123–156.

    CAS  Google Scholar 

  • Peters, G. J., van der Wilt, C. L., van Moorsel, C. J., Kroep, J. R., Bergman, A. M., & Ackland, S. P. (2000). Basis for effective combination cancer chemotherapy with antimetabolites. Pharmacology & Therapeutics, 87, 227–253.

    Article  CAS  Google Scholar 

  • Petersen, G. H., Alzghari, S. K., Chee, W., Sankari, S. S., & La-Beck, N. M. (2016). Meta-analysis of clinical and preclinical studies comparing the anticancer efficacy of liposomal versus conventional non-liposomal doxorubicin. Journal of Controlled Release, 232, 255–264.

    Article  CAS  Google Scholar 

  • Petre, C. E., & Dittmer, D. P. (2007). Liposomal daunorubicin as treatment for Kaposi’s sarcoma. International Journal of Nanomedicine, 2, 277–288.

    CAS  Google Scholar 

  • Pham, E., Birrer, M. J., Eliasof, S., Garmey, E. G., Lazarus, D., Lee, C. R., Man, S., Matulonis, U. A., Peters, C. G., Xu, P., Krasner, C., & Kerbel, R. S. (2015). Translational impact of nanoparticle–drug conjugate CRLX101 with or without bevacizumab in advanced ovarian cancer. Clinical Cancer Research, 21, 808–818.

    Article  CAS  Google Scholar 

  • Piha-Paul, S. A., Thein, K. Z., De Souza, P., Kefford, R., Gangadhar, T., Smith, C., Schuster, S., Zamboni, W. C., Dees, C. E., & Markman, B. (2021). First-in-human, phase I/IIa study of CRLX301, a nanoparticle drug conjugate containing docetaxel, in patients with advanced or metastatic solid malignancies. Investigational New Drugs, 39, 1047–1056.

    Article  CAS  Google Scholar 

  • Pillai, G., & Ceballos-Coronel, M. L. (2013). Science and technology of the emerging nanomedicines in cancer therapy: A primer for physicians and pharmacists. SAGE Open Medicine, 1, 2050312113513759.

    Article  Google Scholar 

  • Qiao, D., Chen, Y., & Liu, L. (2021). Engineered therapeutic nanovaccine against chronic hepatitis B virus infection. Biomaterials, 269, 120674.

    Article  CAS  Google Scholar 

  • Quail, D. F., & Joyce, J. A. (2013). Microenvironmental regulation of tumor progression and metastasis. Nature Medicine, 19, 1423–1437.

    Article  CAS  Google Scholar 

  • Quazi, M. Z., Lee, U., Park, S., Shin, S., Sim, E., Son, H., & Park, N. (2021). Cancer cell-specific enhanced Raman imaging and photothermal therapeutic effect based on reversibly pH-responsive gold nanoparticles. ACS Applied Biomaterials, 4, 8377–8385.

    Article  CAS  Google Scholar 

  • Ralhan, R., & Kaur, J. (2007). Alkylating agents and cancer therapy. Expert Opinion on Therapeutic Patents, 17, 1061–1075.

    Article  CAS  Google Scholar 

  • Ranade, A. A., Joshi, D. A., Phadke, G. K., Patil, P. P., Kasbekar, R. B., Apte, T. G., Dasare, R. R., Mengde, S. D., Parikh, P. M., Bhattacharyya, G. S., & Lopes, G. L. (2013). Clinical and economic implications of the use of nanoparticle paclitaxel (Nanoxel) in India. Annals of Oncology, 24, 6–12.

    Article  Google Scholar 

  • Regenold, M., Bannigan, P., Evans, J. C., Waspe, A., Temple, M. J., & Allen, C. (2021). Turning down the heat: The case for mild hyperthermia and thermosensitive liposomes. Nanomedicine: Nanotechnology, Biology, and Medicine, 40, 102484.

    Article  Google Scholar 

  • Rideau, E., Dimova, R., Schwille, P., Wurm, F. R., & Landfester, K. (2018). Liposomes and polymersomes: A comparative review towards cell mimicking. Chemical Society Reviews, 47, 8572–8610.

    Article  CAS  Google Scholar 

  • Riedel, R. F., Chua, V. S., Kim, T., Dang, J., Zheng, K., Moradkhani, A., Osada, A., & Chawla, S. P. (2021). Results of NC-6300 (nanoparticle epirubicin) in an expansion cohort of patients with angiosarcoma. Journal of Clinical Oncology, 39, 11543–11543.

    Article  Google Scholar 

  • Rugo, H. S., Pluard, T. J., Sharma, P., Melisko, M., Al-Jazayrly, G., Vidula, N., Ji, Y., Weng, D., Lim, H.-S., Yoon, K. E., & Cho, H. J. (2021). Abstract PS13-16: Pharmacokinetic evaluation of an oral paclitaxel DHP107 (Liporaxel®) in patients with recurrent or metastatic breast cancer (MBC): Phase II study (OPERA, NCT03326102). Cancer Research, 81, 13–16.

    Article  Google Scholar 

  • Safra, T. (2003). Cardiac safety of liposomal anthracyclines. The Oncologist, 8, 17–24.

    Article  CAS  Google Scholar 

  • Sanchez-Moreno, P., Ortega-Vinuesa, J. L., Peula-Garcia, J. M., Marchal, J. A., & Boulaiz, H. (2018). Smart drug-delivery systems for cancer nanotherapy. Current Drug Targets, 19, 339–359.

    Article  CAS  Google Scholar 

  • Sankhala, K. K., Mita, A. C., Adinin, R., Wood, L., Beeram, M., Bullock, S., Yamagata, N., Matsuno, K., Fujisawa, T., & Phan, A. (2009). A phase I pharmacokinetic (PK) study of MBP-426, a novel liposome encapsulated oxaliplatin. Journal of Clinical Oncology, 27, 2535.

    Article  Google Scholar 

  • Sarfraz, M., Afzal, A., Yang, T., Gai, Y., Raza, S. M., Khan, M. W., Cheng, Y., Ma, X., & Xiang, G. (2018). Development of dual drug loaded nanosized liposomal formulation by a reengineered ethanolic injection method and its pre-clinical pharmacokinetic studies. Pharmaceutics, 10(3), 151.

    Article  CAS  Google Scholar 

  • Saw, P. E., Yu, M., Choi, M., Lee, E., Jon, S., & Farokhzad, O. C. (2017). Hyper-cell-permeable micelles as a drug delivery carrier for effective cancer therapy. Biomaterials, 123, 118–126.

    Article  CAS  Google Scholar 

  • Seetharamu, N., Kim, E., Hochster, H., Martin, F., & Muggia, F. (2010). Phase II study of liposomal cisplatin (SPI-77) in platinum-sensitive recurrences of ovarian cancer. Anticancer Research, 30, 541–545.

    CAS  Google Scholar 

  • Semple, S. C., Leone, R., Wang, J., Leng, E. C., Klimuk, S. K., Eisenhardt, M. L., Yuan, Z. N., Edwards, K., Maurer, N., Hope, M. J., Cullis, P. R., & Ahkong, Q. F. (2005). Optimization and characterization of a sphingomyelin/cholesterol liposome formulation of vinorelbine with promising antitumor activity. Journal of Pharmaceutical Sciences, 94, 1024–1038.

    Article  CAS  Google Scholar 

  • Senzer, N. N., Matsuno, K., Yamagata, N., Fujisawa, T., Wasserman, E., Sutherland, W., Sharma, S., & Phan, A. (2009). Abstract C36: MBP-426, a novel liposome-encapsulated oxaliplatin, in combination with 5-FU/leucovorin (LV): Phase I results of a Phase I/II study in gastro-esophageal adenocarcinoma, with pharmacokinetics. Molecular Cancer Therapeutics, 8, C36.

    Article  Google Scholar 

  • Sercombe, L., Veerati, T., Moheimani, F., Wu, S. Y., Sood, A. K., & Hua, S. (2015). Advances and challenges of liposome assisted drug delivery. Frontiers in Pharmacology, 6, 286.

    Article  Google Scholar 

  • Sethi, S., Ali, S., Philip, P. A., & Sarkar, F. H. (2013). Clinical advances in molecular biomarkers for cancer diagnosis and therapy. International Journal of Molecular Sciences, 14, 14771–14784.

    Article  Google Scholar 

  • Shae, D., Becker, K. W., Christov, P., Yun, D. S., Lytton-Jean, A. K. R., Sevimli, S., Ascano, M., Kelley, M., Johnson, D. B., Balko, J. M., & Wilson, J. T. (2019). Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nature Nanotechnology, 14, 269–278.

    Article  CAS  Google Scholar 

  • Shetty, N., & Gupta, S. (2014). Eribulin drug review. South Asian Journal of Cancer, 3, 57–59.

    Article  Google Scholar 

  • Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. (2017). Cancer nanomedicine: Progress, challenges and opportunities. Nature Reviews Cancer, 17, 20–37.

    Article  CAS  Google Scholar 

  • Shi, Y., van der Meel, R., Chen, X., & Lammers, T. (2020). The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics, 10, 7921–7924.

    Article  Google Scholar 

  • Shreyash, N., Sonker, M., Bajpai, S., & Tiwary, S. K. (2021). Review of the mechanism of nanocarriers and technological developments in the field of nanoparticles for applications in cancer theragnostics. ACS Applied Biomaterials, 4, 2307–2334.

    Article  CAS  Google Scholar 

  • Sibaud, V., Lebœuf, N. R., Roche, H., Belum, V. R., Gladieff, L., Deslandres, M., Montastruc, M., Eche, A., Vigarios, E., Dalenc, F., & Lacouture, M. E. (2016). Dermatological adverse events with taxane chemotherapy. European Journal of Dermatology, 26, 427–443.

    Article  Google Scholar 

  • Silverman, J. A., & Deitcher, S. R. (2013). Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemotherapy and Pharmacology, 71, 555–564.

    Article  CAS  Google Scholar 

  • Sinha, B. K. (1995). Topoisomerase inhibitors. Drugs, 49, 11–19.

    Article  CAS  Google Scholar 

  • Slingerland, M., Guchelaar, H. J., Rosing, H., Scheulen, M. E., van Warmerdam, L. J., Beijnen, J. H., & Gelderblom, H. (2013). Bioequivalence of Liposome-Entrapped Paclitaxel Easy-To-Use (LEP-ETU) formulation and paclitaxel in polyethoxylated castor oil: A randomized, two-period crossover study in patients with advanced cancer. Clinical Therapeutics, 35, 1946–1954.

    Article  CAS  Google Scholar 

  • Stathopoulos, G. P., Boulikas, T., Vougiouka, M., Deliconstantinos, G., Rigatos, S., Darli, E., Viliotou, V., & Stathopoulos, J. G. (2005). Pharmacokinetics and adverse reactions of a new liposomal cisplatin (Lipoplatin): Phase I study. Oncology Reports, 13, 589–595.

    CAS  Google Scholar 

  • Stathopoulos, G. P., Boulikas, T., Kourvetaris, A., & Stathopoulos, J. (2006a). Liposomal oxaliplatin in the treatment of advanced cancer: A phase I study. Anticancer Research, 26, 1489–1493.

    CAS  Google Scholar 

  • Stathopoulos, G. P., Boulikas, T., Vougiouka, M., Rigatos, S. K., & Stathopoulos, J. G. (2006b). Liposomal cisplatin combined with gemcitabine in pretreated advanced pancreatic cancer patients: A phase I-II study. Oncology Reports, 15, 1201–1204.

    CAS  Google Scholar 

  • Subbiah, V., Grilley-Olson, J. E., Combest, A. J., Sharma, N., Tran, R. H., Bobe, I., Osada, A., Takahashi, K., Balkissoon, J., Camp, A., Masada, A., Reitsma, D. J., & Bazhenova, L. A. (2018). Phase Ib/II trial of NC-6004 (nanoparticle cisplatin) plus gemcitabine in patients with advanced solid tumors. Clinical Cancer Research, 24, 43–51.

    Article  CAS  Google Scholar 

  • Sun, D., Zhou, S., & Gao, W. (2020). What went wrong with anticancer nanomedicine design and how to make it right. ACS Nano, 14, 12281–12290.

    Article  CAS  Google Scholar 

  • Svenson, S., Wolfgang, M., Hwang, J., Ryan, J., & Eliasof, S. (2011). Preclinical to clinical development of the novel camptothecin nanopharmaceutical CRLX101. Journal of Controlled Release, 153, 49–55.

    Article  CAS  Google Scholar 

  • Swami, U., Shah, U., & Goel, S. (2017). Eribulin in non-small cell lung cancer: Challenges and potential strategies. Expert Opinion on Investigational Drugs, 26, 495–508.

    Article  CAS  Google Scholar 

  • Tang, L., Yang, X., Yin, Q., Cai, K., Wang, H., Chaudhury, I., Yao, C., Zhou, Q., Kwon, M., Hartman, J. A., Dobrucki, I. T., Dobrucki, L. W., Borst, L. B., Lezmi, S., Helferich, W. G., Ferguson, A. L., Fan, T. M., & Cheng, J. (2014). Investigating the optimal size of anticancer nanomedicine. Proceedings of the National Academy of Sciences, 111, 15344–15349.

    Article  CAS  Google Scholar 

  • Tippayamontri, T., Kotb, R., Sanche, L., & Paquette, B. (2014). New therapeutic possibilities of combined treatment of radiotherapy with oxaliplatin and its liposomal formulation, Lipoxal™, in rectal cancer using xenograft in nude mice. Anticancer Research, 34, 5303–5312.

    CAS  Google Scholar 

  • Tomkinson, B., Bendele, R., Giles, F. J., Brown, E., Gray, A., Hart, K., LeRay, J. D., Meyer, D., Pelanne, M., & Emerson, D. L. (2003). OSI-211, a novel liposomal topoisomerase I inhibitor, is active in SCID mouse models of human AML and ALL. Leukemia Research, 27, 1039–1050.

    Article  CAS  Google Scholar 

  • Torchilin, V. (2011). Tumor delivery of macromolecular drugs based on the EPR effect. Advanced Drug Delivery Reviews, 63, 131–135.

    Article  CAS  Google Scholar 

  • Tweedie, D. J., Erikson, J. M., & Prough, R. A. (1987). Metabolism of hydrazine anti-cancer agents. Pharmacology & Therapeutics, 34, 111–127.

    Article  CAS  Google Scholar 

  • Ueno, T., Endo, K., Hori, K., Ozaki, N., Tsuji, A., Kondo, S., Wakisaka, N., Murono, S., Kataoka, K., Kato, Y., & Yoshizaki, T. (2014). Assessment of antitumor activity and acute peripheral neuropathy of 1,2-diaminocyclohexane platinum (II)-incorporating micelles (NC-4016). International Journal of Nanomedicine, 9, 3005–3012.

    Article  CAS  Google Scholar 

  • Uldrick, T. S., & Whitby, D. (2011). Update on KSHV epidemiology, Kaposi Sarcoma pathogenesis, and treatment of Kaposi Sarcoma. Cancer Letters, 305, 150–162.

    Article  CAS  Google Scholar 

  • Valcourt, D. M., Dang, M. N., Scully, M. A., & Day, E. S. (2020). Nanoparticle-mediated co-delivery of Notch-1 antibodies and ABT-737 as a potent treatment strategy for triple-negative breast cancer. ACS Nano, 14, 3378–3388.

    Article  CAS  Google Scholar 

  • van der Meel, R., Sulheim, E., Shi, Y., Kiessling, F., Mulder, W. J. M., & Lammers, T. (2019). Smart cancer nanomedicine. Nature Nanotechnology, 14, 1007–1017.

    Article  Google Scholar 

  • Verco, S., Maulhardt, H., Baltezor, M., Williams, E., Iacobucci, M., Wendt, A., Verco, J., Marin, A., Campbell, S., Dorman, P., & diZerega, G. (2021). Local administration of submicron particle paclitaxel to solid carcinomas induces direct cytotoxicity and immune-mediated tumoricidal effects without local or systemic toxicity: Preclinical and clinical studies. Drug Delivery and Translational Research, 11, 1806–1817.

    Article  CAS  Google Scholar 

  • Vergote, I., Bergfeldt, K., Franquet, A., Lisyanskaya, A. S., Bjermo, H., Heldring, N., Buyse, M., & Brize, A. (2020). A randomized phase III trial in patients with recurrent platinum sensitive ovarian cancer comparing efficacy and safety of paclitaxel micellar and Cremophor EL-paclitaxel. Gynecologic Oncology, 156, 293–300.

    Article  CAS  Google Scholar 

  • Vincristine liposomal-INEX: Lipid-encapsulated vincristine, onco TCS, transmembrane carrier system--vincristine, vincacine, vincristine sulfate liposomes for injection, VSLI. (2004). Drugs in R&D, 5, 119–123.

    Article  Google Scholar 

  • Vokes, E. E., Gordon, G. S., Mauer, A. M., Rudin, C. M., Krauss, S. A., Szeto, L., Golomb, H. M., & Hoffman, P. C. (2000). A phase I study of STEALTH cisplatin (SPI-77) and vinorelbine in patients with advanced non small-cell lung cancer. Clinical Lung Cancer, 2, 128–132.

    Article  CAS  Google Scholar 

  • von Moos, R., Thuerlimann, B. J., Aapro, M., Rayson, D., Harrold, K., Sehouli, J., Scotte, F., Lorusso, D., Dummer, R., Lacouture, M. E., Lademann, J., & Hauschild, A. (2008). Pegylated liposomal doxorubicin-associated hand-foot syndrome: Recommendations of an international panel of experts. European Journal of Cancer, 44, 781–790.

    Article  Google Scholar 

  • Wagner, A. M., Knipe, J. M., Orive, G., & Peppas, N. A. (2019). Quantum dots in biomedical applications. Acta Biomaterialia, 94, 44–63.

    Article  CAS  Google Scholar 

  • Wang, W., & Tse-Dinh, Y. C. (2019). Recent advances in use of topoisomerase inhibitors in combination cancer therapy. Current Topics in Medicinal Chemistry, 19, 730–740.

    Article  CAS  Google Scholar 

  • Wang, L., Cao, J., Li, C., Wang, X., Zhao, Y., Li, T., Du, Y., Tao, Z., Peng, W., Wang, B., Zhang, J., Zhang, S., Wang, Z., & Hu, X. (2021). Efficacy and safety of mitoxantrone hydrochloride liposome injection in Chinese patients with advanced breast cancer: A randomized, open-label, active-controlled, single-center, phase II clinical trial. Investigational New Drugs, 40, 330–339.

    Article  Google Scholar 

  • Wetzler, M., Thomas, D. A., Wang, E. S., Shepard, R., Ford, L. A., Heffner, T. L., Parekh, S., Andreeff, M., O'Brien, S., & Kantarjian, H. M. (2013). Phase I/II trial of nanomolecular liposomal annamycin in adult patients with relapsed/refractory acute lymphoblastic leukemia. Clinical Lymphoma, Myeloma & Leukemia, 13, 430–434.

    Article  CAS  Google Scholar 

  • White, S. C., Lorigan, P., Margison, G. P., Margison, J. M., Martin, F., Thatcher, N., Anderson, H., & Ranson, M. (2006). Phase II study of SPI-77 (sterically stabilised liposomal cisplatin) in advanced non-small-cell lung cancer. British Journal of Cancer, 95, 822–828.

    Article  CAS  Google Scholar 

  • Whittle, J. R., Lickliter, J. D., Gan, H. K., Scott, A. M., Simes, J., Solomon, B. J., MacDiarmid, J. A., Brahmbhatt, H., & Rosenthal, M. A. (2015). First in human nanotechnology doxorubicin delivery system to target epidermal growth factor receptors in recurrent glioblastoma. Journal of Clinical Neuroscience, 22, 1889–1894.

    Article  CAS  Google Scholar 

  • Wicki, A., Witzigmann, D., Balasubramanian, V., & Huwyler, J. (2015). Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. Journal of Controlled Release, 200, 138–157.

    Article  CAS  Google Scholar 

  • Wilhelm, S., Tavares, A. J., Dai, Q., Ohta, S., Audet, J., Dvorak, H. F., & Chan, W. C. W. (2016). Analysis of nanoparticle delivery to tumours. Nature Reviews Materials, 1, 16014.

    Article  CAS  Google Scholar 

  • Xu, X., Wang, L., Xu, H. Q., Huang, X. E., Qian, Y. D., & Xiang, J. (2013). Clinical comparison between paclitaxel liposome (Lipusu®) and paclitaxel for treatment of patients with metastatic gastric cancer. Asian Pacific Journal of Cancer Prevention, 14, 2591–2594.

    Article  Google Scholar 

  • Xu, C., Nam, J., Hong, H., Xu, Y., & Moon, J. J. (2019). Positron emission tomography-guided photodynamic therapy with biodegradable mesoporous silica nanoparticles for personalized cancer immunotherapy. ACS Nano, 13, 12148–12161.

    Article  CAS  Google Scholar 

  • Yacoby, I., & Benhar, I. (2008). Antibacterial nanomedicine. Nanomedicine, 3, 329–341.

    Article  CAS  Google Scholar 

  • Yang, J. I., Jin, B., Kim, S. Y., Li, Q., Nam, A., Ryu, M. O., Lee, W. W., Son, M. H., Park, H. J., Song, W. J., & Youn, H. Y. (2020). Antitumour effects of Liporaxel (oral paclitaxel) for canine melanoma in a mouse xenograft model. Veterinary and Comparative Oncology, 18, 152–160.

    Article  CAS  Google Scholar 

  • Young, C., Schluep, T., Hwang, J., & Eliasof, S. (2011). CRLX101 (formerly IT-101)-a novel nanopharmaceutical of camptothecin in clinical development. Current Bioactive Compounds, 7, 8–14.

    Article  CAS  Google Scholar 

  • Yousefpour, P., Ahn, L., Tewksbury, J., Saha, S., Costa, S. A., Bellucci, J. J., Li, X., & Chilkoti, A. (2019). Conjugate of doxorubicin to albumin-binding peptide outperforms aldoxorubicin. Small, 15, e1804452.

    Article  Google Scholar 

  • Yuan, F., Leunig, M., Huang, S. K., Berk, D. A., Papahadjopoulos, D., & Jain, R. K. (1994). Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Research, 54, 3352–3356.

    CAS  Google Scholar 

  • Yun, Y. H., Lee, B. K., & Park, K. (2015). Controlled drug delivery: Historical perspective for the next generation. Journal of Controlled Release, 219, 2–7.

    Article  CAS  Google Scholar 

  • Zamboni, W. C., Ramalingam, S., Friedland, D. M., Edwards, R. P., Stoller, R. G., Strychor, S., Maruca, L., Zamboni, B. A., Belani, C. P., & Ramanathan, R. K. (2009). Phase I and pharmacokinetic study of pegylated liposomal CKD-602 in patients with advanced malignancies. Clinical Cancer Research, 15, 1466–1472.

    Article  CAS  Google Scholar 

  • Zelmer, C., Zweifel, L. P., Kapinos, L. E., Craciun, I., Güven, Z. P., Palivan, C. G., & Lim, R. Y. H. (2020). Organelle-specific targeting of polymersomes into the cell nucleus. Proceedings of the National Academy of Sciences, 117, 2770–2778.

    Article  CAS  Google Scholar 

  • Zhang, H. (2016). Onivyde for the therapy of multiple solid tumors. Oncotargets and Therapy, 9, 3001–3007.

    Article  CAS  Google Scholar 

  • Zhang, J. A., Xuan, T., Parmar, M., Ma, L., Ugwu, S., Ali, S., & Ahmad, I. (2004). Development and characterization of a novel liposome-based formulation of SN-38. International Journal of Pharmaceutics, 270, 93–107.

    Article  CAS  Google Scholar 

  • Zhang, J., Tian, Q., Yung, C. S., Chuen, L. S., Zhou, S., Duan, W., & Zhu, Y. Z. (2005). Metabolism and transport of oxazaphosphorines and the clinical implications. Drug Metabolism Reviews, 37, 611–703.

    Article  CAS  Google Scholar 

  • Zhang, E., Xing, R., Liu, S., & Li, P. (2019). Current advances in development of new docetaxel formulations. Expert Opinion on Drug Delivery, 16, 301–312.

    Article  CAS  Google Scholar 

  • Zhang, L., Beatty, A., Lu, L., Abdalrahman, A., Makris, T. M., Wang, G., & Wang, Q. (2020). Microfluidic-assisted polymer-protein assembly to fabricate homogeneous functional nanoparticles. Materials Science & Engineering C, Materials for Biological Applications, 111, 110768.

    Article  CAS  Google Scholar 

  • Zhang, J., Pan, Y., Shi, Q., Zhang, G., Jiang, L., Dong, X., Gu, K., Wang, H., Zhang, X., Yang, N., Li, Y., Xiong, J., Yi, T., Peng, M., Song, Y., Fan, Y., Cui, J., Chen, G., Tan, W., Zang, A., Guo, Q., Zhao, G., Wang, Z., He, J., Yao, W., Wu, X., Chen, K., Hu, X., Hu, C., Yue, L., Jiang, D., Wang, G., Liu, J., Yu, G., Li, J., Bai, J., Xie, W., Zhao, W., Wu, L., & Zhou, C. (2022). Paclitaxel liposome for injection (Lipusu) plus cisplatin versus gemcitabine plus cisplatin in the first-line treatment of locally advanced or metastatic lung squamous cell carcinoma: A multicenter, randomized, open-label, parallel controlled clinical study. Cancer Communications, 42, 3–16.

    Article  CAS  Google Scholar 

  • Zhao, L., & Zhang, B. (2017). Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes. Scientific Reports, 7, 44735.

    Article  Google Scholar 

  • Zhu, L., & Chen, L. (2019). Progress in research on paclitaxel and tumor immunotherapy. Cellular & Molecular Biology Letters, 24, 40.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Marco Cordani is currently a recipient of a Maria Zambrano research contract from the Spanish Ministry of Universities and Complutense University of Madrid (call of grants for the requalification of the Spanish university system 2021–2023). Marco Cordani acknowledges support of the Recovery, Transformation, and Resilience Plan “Next generation EU”. Raffaele Strippoli acknowledges a grant form Ministry for Health of Italy (Ricerca Corrente).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marco Cordani or Juan Gonzalez-Valdivieso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lopez-Mendez, T.B., Strippoli, R., Trionfetti, F., Calvo, P., Cordani, M., Gonzalez-Valdivieso, J. (2023). Clinical Trials Involving Chemotherapy-Based Nanocarriers in Cancer Therapy: State of the Art and Future Directions. In: Almeida de Sousa, Â.M., Pienna Soares, C., Chorilli, M. (eds) Cancer Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-031-17831-3_12

Download citation

Publish with us

Policies and ethics