Skip to main content

Salinity Prediction in Coastal Aquifers of the Vietnamese Mekong River Delta Using Innovative Machine Learning Algorithms

  • Conference paper
  • First Online:
Advances in Research on Water Resources and Environmental Systems (GTER 2022)

Abstract

Groundwater salinization is a severe issue, causing various problems to human health, agriculture, ecosystems, and infrastructure in many coastal regions across the world. However, this phenomenon is difficult to predict with high accuracy. In this study, we propose and verify a new artificial intelligence approach for predicting groundwater salinity and identifying the main factors of salinization. The coastal aquifers of the Mekong River Delta (Vietnam) were selected to test the new approach. In the proposed approach, Extreme Gradient Boosting (XGB) was used to build a groundwater salinity model, and Genetic Optimization (GO) was employed to optimize the model parameters. Gaussian Processes (GP) and Random Forests (RF) were also used as a benchmark for the model comparison. For this regard, a groundwater salinity database with 215 groundwater samples and 20 driven factors related to hydrology, geology, geography, and anthropogenic activities was prepared. Performance of the models was assessed using Correlation Coefficient (r), Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute Error (MAE). The results show that the proposed GO-XGB model yields high performance both on the training dataset (r = 0.999, RMSE = 18.450, MAPE = 2.070, and MAE = 4.864) and the validation dataset (r = 0.787, RMSE = 141.042, MAPE = 87.250, and MAE = 74.993). The proposed GO-XGB model performed better predictive result compared to the benchmark, GP, and RF. Among the 20 factors, groundwater level, vertical hydraulic conductivity, lithology, extraction capacity, horizontal hydraulic conductivity, distance to saline sources, and well density are the most important factors to groundwater salinization prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelhamid H et al (2016) Simulation of seawater intrusion in the Nile Delta aquifer under the conditions of climate change, vol 47

    Google Scholar 

  • An TD et al (2018) Isotopic and hydrogeochemical signatures in evaluating groundwater quality in the Coastal Area of the Mekong Delta, Vietnam. In: Bui DT et al (eds) Advances and applications in geospatial technology and earth resources: proceedings of the international conference on geo-spatial technologies and earth resources 2017. Springer International Publishing, Cham, pp 293–314

    Google Scholar 

  • Azimi S, Moghaddam MA, Hashemi Monfared SA (2018) Large-scale association analysis of climate drought and decline in groundwater quantity using Gaussian process classification (case study: 609 study area of Iran). J Environ Health Sci Eng 16(2):129–145

    Google Scholar 

  • Banerjee P et al (2011) Artificial neural network model as a potential alternative for groundwater salinity forecasting. J Hydrol 398(3–4):212–220

    CAS  Google Scholar 

  • Behera AK et al (2019) Identification of seawater intrusion signatures through geochemical evolution of groundwater: a case study based on coastal region of the Mahanadi delta, Bay of Bengal, India. Nat Hazards 97(3):1209–1230

    Google Scholar 

  • Blasco M, Auqué LF, Gimeno MJ (2019) Geochemical evolution of thermal waters in carbonate—evaporitic systems: the triggering effect of halite dissolution in the dedolomitisation and albitisation processes. J Hydrol 570:623–636

    CAS  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    MATH  Google Scholar 

  • Brouwer R et al (2018) Economic valuation of groundwater protection using a groundwater quality ladder based on chemical threshold levels. Ecol Ind 88:292–304

    CAS  Google Scholar 

  • Carretero S et al (2013) Impact of sea-level rise on saltwater intrusion length into the coastal aquifer, Partido de La Costa, Argentina. Cont Shelf Res 61–62:62–70

    ADS  Google Scholar 

  • Cary L et al (2015) Origins and processes of groundwater salinization in the urban coastal aquifers of Recife (Pernambuco, Brazil): a multi-isotope approach. Sci Total Environ 530–531:411–429

    ADS  PubMed  Google Scholar 

  • Chatton E et al (2016) Glacial recharge, salinisation and anthropogenic contamination in the coastal aquifers of Recife (Brazil). Sci Total Environ 569–570:1114–1125

    ADS  PubMed  Google Scholar 

  • Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, San Francisco, California, USA, pp 785–794

    Google Scholar 

  • Chen W et al (2019) Applying population-based evolutionary algorithms and a neuro-fuzzy system for modeling landslide susceptibility. CATENA 172:212–231

    Google Scholar 

  • Criminisi A (2011) Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found Trends Comput Graph Vis 7(2–3):81–227

    Google Scholar 

  • de Graaf IEM et al (2019) Environmental flow limits to global groundwater pumping. Nature 574(7776):90–94

    ADS  PubMed  Google Scholar 

  • Delsman JR et al (2014) Paleo-modeling of coastal saltwater intrusion during the Holocene: an application to the Netherlands. Hydrol Earth Syst Sci 18(10):3891–3905

    ADS  Google Scholar 

  • Elmahdy SI, Mohamed MM (2013) Influence of geological structures on groundwater accumulation and groundwater salinity in Musandam Peninsula, UAE and Oman. Geocarto Int 28(5):453–472

    Google Scholar 

  • Essaid HI, Caldwell RR (2017) Evaluating the impact of irrigation on surface water—groundwater interaction and stream temperature in an agricultural watershed. Sci Total Environ 599–600:581–596

    ADS  PubMed  Google Scholar 

  • Famiglietti JS (2014) The global groundwater crisis. Nat Clim Chang 4(11):945–948

    ADS  Google Scholar 

  • Ferguson G, Gleeson T (2012) Vulnerability of coastal aquifers to groundwater use and climate change. Nat Clim Chang 2(5):342–345

    ADS  Google Scholar 

  • Forrest S (1993) Genetic algorithms: principles of natural selection applied to computation. Science 261(5123):872–878

    ADS  CAS  PubMed  Google Scholar 

  • Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29(5):1189–1232

    MathSciNet  MATH  Google Scholar 

  • Gallardo AH, Marui A (2007) Modeling the dynamics of the freshwater-saltwater interface in response to construction activities at a coastal site. Int J Environ Sci Technol 4(3):285–294

    CAS  Google Scholar 

  • Giambastiani BMS et al (2018) Forest fire effects on groundwater in a coastal aquifer (Ravenna, Italy). Hydrol Process 32(15):2377–2389

    ADS  Google Scholar 

  • Guhl F et al (2006) Geometry and dynamics of the freshwater—seawater interface in a coastal aquifer in southeastern Spain. Hydrol Sci J 51(3):543–555

    Google Scholar 

  • Guyon I, Elisseeff A (2006) An introduction to feature extraction, in feature extraction. Springer, Berlin, Heidelberg, pp 1–25

    Google Scholar 

  • Hall J, Rasmussen C, Maciejowski J (2012) Modelling and control of nonlinear systems using Gaussian processes with partial model information. In: 2012 IEEE 51st IEEE conference on decision and control (CDC)

    Google Scholar 

  • Han D, Currell MJ (2018) Delineating multiple salinization processes in a coastal plain aquifer, northern China: hydrochemical and isotopic evidence. Hydrol Earth Syst Sci 22(6):3473–3491

    ADS  CAS  Google Scholar 

  • Han D, Post VEA, Song X (2015) Groundwater salinization processes and reversibility of seawater intrusion in coastal carbonate aquifers. J Hydrol 531:1067–1080

    CAS  Google Scholar 

  • Hira ZM, Gillies DF (2015) A review of feature selection and feature extraction methods applied on microarray data. Adv Bioinform 2015:1–13

    Google Scholar 

  • Hoa PV et al (2019) Soil salinity mapping using SAR Sentinel-1 data and advanced machine learning algorithms: a case study at Ben Tre Province of the Mekong River Delta (Vietnam). Rem Sens 11(2):128

    ADS  Google Scholar 

  • Hoang HT, Bäumle R (2018) Complex hydrochemical characteristics of the middle–upper Pleistocene aquifer in Soc Trang Province, Southern Vietnam. Environ Geochem Health

    Google Scholar 

  • Hoang HT, Bäumle R (2019) Complex hydrochemical characteristics of the middle-upper Pleistocene aquifer in Soc Trang Province, Southern Vietnam. Environ Geochem Health 41(1):325–341

    CAS  PubMed  Google Scholar 

  • Hoang LP et al (2019) The Mekong’s future flows under multiple drivers: how climate change, hydropower developments and irrigation expansions drive hydrological changes. Sci Total Environ 649:601–609

    ADS  CAS  PubMed  Google Scholar 

  • Isazadeh M, Biazar SM, Ashrafzadeh A (2017) Support vector machines and feed-forward neural networks for spatial modeling of groundwater qualitative parameters. Environ Ear Sci 76(17):610–614

    ADS  Google Scholar 

  • Javadi A et al (2015) Multi-objective optimization of different management scenarios to control seawater intrusion in coastal aquifers. Water Resour Manage 29(6):1843–1857

    Google Scholar 

  • Jennings PC et al (2019) Genetic algorithms for computational materials discovery accelerated by machine learning. NPJ Comput Mater 5(1):46–52

    Google Scholar 

  • Johnson NE, Bonczak B, Kontokosta CE (2018) Using a gradient boosting model to improve the performance of low-cost aerosol monitors in a dense, heterogeneous urban environment. Atmos Environ 184:9–16

    ADS  CAS  Google Scholar 

  • Kagabu M et al (2020) Describing coseismic groundwater level rise using tank model in volcanic aquifers, Kumamoto, southern Japan. J Hydrol 582:124464-14

    Google Scholar 

  • Kanagaraj G et al (2018) Hydrogeochemical processes and influence of seawater intrusion in coastal aquifers south of Chennai, Tamil Nadu, India. Environ Sci Pollut Res 25(9):8989–9011

    CAS  Google Scholar 

  • Kaur L et al (2020) Groundwater potential assessment of an alluvial aquifer in Yamuna sub-basin (Panipat region) using remote sensing and GIS techniques in conjunction with analytical hierarchy process (AHP) and catastrophe theory (CT). Ecol Ind 110:105850-19

    Google Scholar 

  • Khaska M et al (2013) Origin of groundwater salinity (current seawater vs. saline deep water) in a coastal karst aquifer based on Sr and Cl isotopes. Case study of the La Clape massif (southern France). Appl Geochem 37:212–227

    Google Scholar 

  • Kim IH, Yang J-S (2018) Prioritizing countermeasures for reducing seawater-intrusion area by considering regional characteristics using SEAWAT and a multicriteria decision-making method. Hydrol Process 32(25):3741–3757

    ADS  Google Scholar 

  • Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97(1):273–324

    MATH  Google Scholar 

  • Kopsiaftis G et al (2019) Gaussian process regression tuned by Bayesian optimization for seawater intrusion prediction. Comput Intell Neurosci 2019:2859429-12

    Google Scholar 

  • Lal A, Datta B (2019) Multi-objective groundwater management strategy under uncertainties for sustainable control of saltwater intrusion: Solution for an island country in the South Pacific. J Environ Manage 234:115–130

    PubMed  Google Scholar 

  • Lapworth DJ et al (2017) Groundwater quality in the alluvial aquifer system of northwest India: new evidence of the extent of anthropogenic and geogenic contamination. Sci Total Environ 599–600:1433–1444

    ADS  PubMed  Google Scholar 

  • Larsen F et al (2017) Groundwater salinity influenced by Holocene seawater trapped in incised valleys in the Red River delta plain. Nat Geosci 10(5):376–381

    Google Scholar 

  • Lee S, Currell M, Cendón DI (2016) Marine water from mid-Holocene sea level highstand trapped in a coastal aquifer: evidence from groundwater isotopes, and environmental significance. Sci Total Environ 544:995–1007

    ADS  CAS  PubMed  Google Scholar 

  • Li Y et al (2016) A fully coupled depth-integrated model for surface water and groundwater flows. J Hydrol 542:172–184

    CAS  Google Scholar 

  • Lim S, Chi S (2019) Xgboost application on bridge management systems for proactive damage estimation. Adv Eng Inform 41:100922-14

    Google Scholar 

  • Liu Y et al (2018) Geographically weighted temporally correlated logistic regression model. Sci Rep 8(1):1417-14

    Google Scholar 

  • Ma Q et al (2015) Estimation of seawater–groundwater exchange rate: case study in a tidal flat with a large-scale seepage face (Laizhou Bay, China). Hydrogeol J 23(2):265–275

    ADS  CAS  Google Scholar 

  • Ma Y et al (2019a) Characteristics of groundwater pollution in a vegetable cultivation area of typical facility agriculture in a developed city. Ecol Ind 105:709–716

    CAS  Google Scholar 

  • Ma X, Xu F, Chen B (2019b) Interpolation of wind pressures using Gaussian process regression. J Wind Eng Ind Aerodyn 188:30–42

    Google Scholar 

  • Mahlknecht J et al (2017) Assessing seawater intrusion in an arid coastal aquifer under high anthropogenic influence using major constituents, Sr and B isotopes in groundwater. Sci Total Environ 587–588:282–295

    ADS  PubMed  Google Scholar 

  • Mahmoodzadeh D, Karamouz M (2019) Seawater intrusion in heterogeneous coastal aquifers under flooding events. J Hydrol 568:1118–1130

    Google Scholar 

  • Malki M et al (2017) Impact of agricultural practices on groundwater quality in intensive irrigated area of Chtouka-Massa, Morocco. Sci Total Environ 574:760–770

    ADS  CAS  PubMed  Google Scholar 

  • Melloul AJ, Goldenberg LC (1997) Monitoring of seawater intrusion in coastal aquifers: basics and local concerns. J Environ Manage 51(1):73–86

    Google Scholar 

  • Minderhoud PSJ et al (2017) Impacts of 25 years of groundwater extraction on subsidence in the Mekong delta, Vietnam. Environ Res Lett 12(6):064006-13

    Google Scholar 

  • Mohanty AK, Rao VVSG (2019) Hydrogeochemical, seawater intrusion and oxygen isotope studies on a coastal region in the Puri District of Odisha, India. CATENA 172:558–571

    CAS  Google Scholar 

  • Nadiri AA et al (2018) Mapping specific vulnerability of multiple confined and unconfined aquifers by using artificial intelligence to learn from multiple DRASTIC frameworks. J Environ Manage 227:415–428

    CAS  PubMed  Google Scholar 

  • Naghibi SA, Pourghasemi HR, Dixon B (2015) GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ Monit Assess 188(1):44–71

    PubMed  Google Scholar 

  • Nam NDG et al (2019) Assessment of groundwater quality and its suitability for domestic and irrigation use in the coastal zone of the Mekong Delta, Vietnam. In: Stewart MA, Coclanis PA (eds) Water and power: environmental governance and strategies for sustainability in the lower Mekong Basin. Springer International Publishing, Cham, pp 173–185

    Google Scholar 

  • Nishanthiny SC et al (2010) Irrigation water quality based on hydro chemical analysis, Jaffna, Sri Lanka. Am Eurasian J Agric Environ Sci 7(1):100–102

    Google Scholar 

  • Paine JG (2003) Determining salinization extent, identifying salinity sources, and estimating chloride mass using surface, borehole, and airborne electromagnetic induction methods. Water Resour Res 39(3):3–10

    Google Scholar 

  • Park J, Kwock CK (2015) Sodium intake and prevalence of hypertension, coronary heart disease, and stroke in Korean adults. J Ethnic Foods 2(3):92–96

    Google Scholar 

  • Park J, Sandberg IW (1991) Universal approximation using radial-basis-function networks. Neural Comput 3(2):246–257

    CAS  PubMed  Google Scholar 

  • Pham BT et al (2019a) Hybrid computational intelligence models for groundwater potential mapping. CATENA 182:104101–104113

    Google Scholar 

  • Pham BT et al (2019b) A novel artificial intelligence approach based on multi-layer perceptron neural network and biogeography-based optimization for predicting coefficient of consolidation of soil. CATENA 173:302–311

    Google Scholar 

  • Podgorski JE et al (2018) Prediction modeling and mapping of groundwater fluoride contamination throughout India. Environ Sci Technol 52(17):9889–9898

    ADS  CAS  PubMed  Google Scholar 

  • Ransom KM et al (2017) A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central Valley aquifer, California, USA. Sci Total Environ 601–602:1160–1172

    ADS  PubMed  Google Scholar 

  • Rasmussen CE (2003) Gaussian processes in machine learning. In: Bousquet O, von Luxburg U, Rätsch G (eds) Advanced lectures on machine learning: ML summer schools 2003, Canberra, Australia, 2–14, 2003, Tübingen, Germany, 4–16 Aug 2003. Springer, Berlin, Heidelberg, pp 63–71

    Google Scholar 

  • Rizeei HM et al (2019) Groundwater aquifer potential modeling using an ensemble multi-adoptive boosting logistic regression technique. J Hydrol 579:124172-11

    Google Scholar 

  • Rodriguez-Galiano V et al (2014) Predictive modeling of groundwater nitrate pollution using random forest and multisource variables related to intrinsic and specific vulnerability: a case study in an agricultural setting (Southern Spain). Sci Total Environ 476–477:189–206

    ADS  PubMed  Google Scholar 

  • Roy Dilip K, Datta B (2017) Multivariate adaptive regression spline ensembles for management of multilayered coastal aquifers. J Hydrol Eng 22(9):04017031-13

    Google Scholar 

  • Sajedi-Hosseini F et al (2018) A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination. Sci Total Environ 644:954–962

    Google Scholar 

  • Scholkopf B et al (1997) Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Trans Signal Process 45(11):2758–2765

    ADS  Google Scholar 

  • Sreekanth J, Datta B (2010) Multi-objective management of saltwater intrusion in coastal aquifers using genetic programming and modular neural network based surrogate models. J Hydrol 393(3–4):245–256

    Google Scholar 

  • Stein S et al (2019) The effect of pumping saline groundwater for desalination on the fresh–saline water interface dynamics. Water Res 156:46–57

    CAS  PubMed  Google Scholar 

  • Sun Y et al (2016) Technical note: Application of artificial neural networks in groundwater table forecasting—a case study in a Singapore swamp forest. Hydrol Earth Syst Sci 20(4):1405–1412

    ADS  Google Scholar 

  • Tien Bui D et al (2016) Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 13(2):361–378

    Google Scholar 

  • Tran DA et al (2019) Stable isotope characteristics of water resources in the coastal area of the Vietnamese Mekong Delta. Isot Environ Health Stud 55(6):566–587

    CAS  Google Scholar 

  • Tweed S et al (2018) Impact of irrigated agriculture on groundwater resources in a temperate humid region. Sci Total Environ 613–614:1302–1316

    ADS  PubMed  Google Scholar 

  • Van Hung P et al (2019) Paleo-hydrogeological reconstruction of the fresh-saline groundwater distribution in the Vietnamese Mekong Delta since the late Pleistocene. J Hydrol Reg Stud 23:100594-22

    Google Scholar 

  • Vineis P, Chan Q, Khan A (2011) Climate change impacts on water salinity and health. J Epidemiol Glob Health 1(1):5–10

    PubMed  PubMed Central  Google Scholar 

  • Voss CI, Souza WR (1987) Variable density flow and solute transport simulation of regional aquifers containing a narrow freshwater-saltwater transition zone. Water Resour Res 23(10):1851–1866

    ADS  CAS  Google Scholar 

  • Wagner F, Tran VB, Renaud FG (2012) Groundwater resources in the Mekong Delta: availability, utilization and risks. In: Renaud FG, Kuenzer C (eds) The Mekong delta system: interdisciplinary analyses of a River Delta. Springer, Netherlands, Dordrecht, pp 201–220

    Google Scholar 

  • Walter J et al (2017) The influence of water/rock—water/clay interactions and mixing in the salinization processes of groundwater. J Hydrol Reg Stud 13:168–188

    Google Scholar 

  • Werner AD et al (2013) Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv Water Resour 51:3–26

    ADS  Google Scholar 

  • Winkel L et al (2008) Predicting groundwater arsenic contamination in Southeast Asia from surface parameters. Nat Geosci 1(8):536–542

    ADS  CAS  Google Scholar 

  • Yadav B et al (2018) Data-based modelling approach for variable density flow and solute transport simulation in a coastal aquifer. Hydrol Sci J 63(2):210–226

    Google Scholar 

  • Yechieli Y et al (2019) Recent seawater intrusion into deep aquifer determined by the radioactive noble-gas isotopes 81Kr and 39Ar. Earth Planet Sci Lett 507:21–29

    ADS  CAS  Google Scholar 

  • Yu X, Michael HA (2019) Mechanisms, configuration typology, and vulnerability of pumping-induced seawater intrusion in heterogeneous aquifers. Adv Water Resour 128:117–128

    ADS  Google Scholar 

  • Zeng X et al (2018) Identifying key factors of the seawater intrusion model of Dagu river basin, Jiaozhou Bay. Environ Res 165:425–430

    CAS  PubMed  Google Scholar 

  • Zhao X et al (2019) Identifying N6-methyladenosine sites using extreme gradient boosting system optimized by particle swarm optimizer. J Theor Biol 467:39–47

    ADS  CAS  PubMed  MATH  Google Scholar 

Download references

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dang An Tran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tran, D.A., Thang, H.N., Bui, D.T., Kha, V.T. (2023). Salinity Prediction in Coastal Aquifers of the Vietnamese Mekong River Delta Using Innovative Machine Learning Algorithms. In: Vo, P.L., Tran, D.A., Pham, T.L., Le Thi Thu, H., Nguyen Viet, N. (eds) Advances in Research on Water Resources and Environmental Systems. GTER 2022. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-17808-5_25

Download citation

Publish with us

Policies and ethics