Skip to main content

Abstract

The knee is a pivot-condylar joint, through which important loads pass in weight-bearing position, and is also an essential joint involved in gait.

In children, radiographic measurements may be challenging, given some ossification centers may only be partially visible.

From a biomechanical perspective, growth causes a significant change in angular measurements. Therefore, the angle measurements presented in this chapter must be interpreted in an age-dependent manner. It should be noted that the measurement can be significantly affected by the degree of flexion or when performed in a standing position.

Knee disorders in children may have an effect on gait and weight-bearing and therefore have an impact on the biomechanics of other joints and in the general health.

An understanding of the biomechanics and different relations between the components of the joint is necessary to correctly diagnose pathology of the knee in children.

Radiography and ultrasound remain the initial imaging modalities of choice, with an increase in the use of MRI from early ages, although the prolonged imaging time and need for sedation in younger children may limit its use in daily practice. Because of the exposure to ionizing radiation, the use of computed tomography is limited to selected cases. In this chapter, we describe the normal radiological measurements of the tibiofemoral joint, the soft tissues of the tibiofemoral joint, and the patellofemoral joint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Koifman A, Lefebvre J. Appearance of secondary ossification points and age determination of bone. Arch Fr Pediatr. 1956;13:1101–5.

    CAS  PubMed  Google Scholar 

  2. Vergara-Amador E, Davalos Herrera D, Moreno LÁ. Radiographic features of the development of the anterior tibial tuberosity. Radiologia. 2016;58:294–300. https://doi.org/10.1016/j.rx.2016.01.005.

    Article  CAS  PubMed  Google Scholar 

  3. D’Amore T, Tanaka MJ, Cosgarea AJ. When and how far to move the tibial tuberosity in patients with patellar instability. Sports Med Arthrosc Rev. 2017;25:78–84. https://doi.org/10.1097/JSA.0000000000000146.

    Article  PubMed  Google Scholar 

  4. Laor T, Jaramillo D. MR imaging insights into skeletal maturation: what is normal? Radiology. 2009;250:28–38. https://doi.org/10.1148/radiol.2501071322.

    Article  PubMed  Google Scholar 

  5. Salenius P, Vankka E. The development of the tibiofemoral angle in children. J Bone Joint Surg Am. 1975;57:259–61.

    Article  CAS  PubMed  Google Scholar 

  6. Levine AM, Drennan JC. Physiological bowing and tibia vara. The metaphyseal-diaphyseal angle in the measurement of bowleg deformities. J Bone Joint Surg Am. 1982;64:1158–63.

    Article  CAS  PubMed  Google Scholar 

  7. Kristiansen LP, Gunderson RB, Steen H, Reikerås O. The normal development of tibial torsion. Skelet Radiol. 2001;30:519–22. https://doi.org/10.1007/s002560100388.

    Article  CAS  Google Scholar 

  8. Botchu R, Obaid H, Rennie W. Correlation between trochlear dysplasia and the notch index. J Orthop Surg (Hong Kong). 2013;21:290–3. https://doi.org/10.1177/230949901302100305.

    Article  PubMed  Google Scholar 

  9. Lima FM, Debieux P, Aihara AY, et al. The development of the intercondylar notch in the pediatric population. Knee. 2020;27:747–54. https://doi.org/10.1016/j.knee.2020.04.020.

    Article  PubMed  Google Scholar 

  10. Reid JC, Yonke B, Tompkins M. The angle of inclination of the native ACL in the coronal and sagittal planes. Knee Surg Sports Traumatol Arthrosc. 2017;25:1101–5. https://doi.org/10.1007/s00167-017-4419-8.

    Article  PubMed  Google Scholar 

  11. Murao H, Morishita S, Nakajima M, Abe M. Magnetic resonance imaging of anterior cruciate ligament (ACL) tears: diagnostic value of ACL-tibial plateau angle. J Orthop Sci. 1998;3:10–7. https://doi.org/10.1007/s007760050016.

    Article  CAS  PubMed  Google Scholar 

  12. Perkins CA, Willimon SC. Pediatric anterior cruciate ligament reconstruction. Orthop Clin N Am. 2020;51:55–63. https://doi.org/10.1016/j.ocl.2019.08.009.

    Article  Google Scholar 

  13. Wörtler K. MRT des Kniegelenks. Radiologe. 2007;47:1131–46. https://doi.org/10.1007/s00117-007-1581-x.

    Article  PubMed  Google Scholar 

  14. Fox MG. MR imaging of the meniscus: review, current trends, and clinical implications. Radiol Clin N Am. 2007;45:1033–53. https://doi.org/10.1016/j.rcl.2007.08.009.

    Article  PubMed  Google Scholar 

  15. Nietosvaara Y. The femoral sulcus in children. An ultrasonographic study. J Bone Joint Surg Br. 1994;76:807–9.

    Article  CAS  PubMed  Google Scholar 

  16. Richmond CG, Shea KG, Burlile JF, et al. Patellar-trochlear morphology in pediatric patients from 2 to 11 years of age: a descriptive analysis based on computed tomography scanning. J Pediatr Orthop. 2020;40:e96–e102. https://doi.org/10.1097/BPO.0000000000001405.

    Article  PubMed  Google Scholar 

  17. Trivellas M, Kelley B, West N, et al. Trochlear morphology development: study of normal pediatric knee MRIs. J Pediatr Orthop. 2021;41:77–82. https://doi.org/10.1097/BPO.0000000000001697.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Düppe K, Gustavsson N, Edmonds EW. Developmental morphology in childhood patellar instability: age-dependent differences on magnetic resonance imaging. J Pediatr Orthop. 2016;36:870–6. https://doi.org/10.1097/BPO.0000000000000556.

    Article  PubMed  Google Scholar 

  19. Brattstroem H. Shape of the intercondylar groove normally and in recurrent dislocation of patella. A clinical and x-ray-anatomical investigation. Acta Orthop Scand Suppl. 1964;68(SUPPL 68):1–148.

    Article  Google Scholar 

  20. Dejour H, Walch G, Nove-Josserand L, Guier C. Factors of patellar instability: an anatomic radiographic study. Knee Surg, Sports Traumatol Arthrosc. 1994;2:19–26. https://doi.org/10.1007/BF01552649.

    Article  CAS  PubMed  Google Scholar 

  21. Fithian DC, Paxton EW, Stone ML, et al. Epidemiology and natural history of acute patellar dislocation. Am J Sports Med. 2004;32:1114–21. https://doi.org/10.1177/0363546503260788.

    Article  PubMed  Google Scholar 

  22. Mizobuchi RR, Galbiatti JA, Quirici Neto F, et al. Ultrasonographic study of the femoropatellar joint and its attachments in normal infants from birth to 24 months of age: part I. J Pediatr Orthop B. 2007;16:262–5. https://doi.org/10.1097/BPB.0b013e32809256d0.

    Article  PubMed  Google Scholar 

  23. Nietosvaara AY, Aalto KA. Ultrasonographic evaluation of patellar tracking in children. Clin Orthop Relat Res. 1993;(297):62–4.

    Google Scholar 

  24. Nietosvaara Y, Aalto K. The cartilaginous femoral sulcus in children with patellar dislocation: an ultrasonographic study. J Pediatr Orthop. 1997;17:50–3.

    Article  CAS  PubMed  Google Scholar 

  25. Carrillon Y, Abidi H, Dejour D, et al. Patellar instability: assessment on MR images by measuring the lateral trochlear inclination-initial experience. Radiology. 2000;216:582–5. https://doi.org/10.1148/radiology.216.2.r00au07582.

    Article  CAS  PubMed  Google Scholar 

  26. Koëter S, Bongers EMHF, de Rooij J, van Kampen A. Minimal rotation aberrations cause radiographic misdiagnosis of trochlear dysplasia. Knee Surg Sports Traumatol Arthrosc. 2006;14:713–7. https://doi.org/10.1007/s00167-005-0031-4.

    Article  PubMed  Google Scholar 

  27. Malghem J, Maldague B. Depth insufficiency of the proximal trochlear groove on lateral radiographs of the knee: relation to patellar dislocation. Radiology. 1989;170:507–10. https://doi.org/10.1148/radiology.170.2.2911676.

    Article  CAS  PubMed  Google Scholar 

  28. Ali SA, Helmer R, Terk MR. Analysis of the patellofemoral region on MRI: Association of Abnormal Trochlear Morphology with Severe Cartilage Defects. Am J Roentgenol. 2010;194:721–7. https://doi.org/10.2214/AJR.09.3008.

    Article  Google Scholar 

  29. van Huyssteen AL, Hendrix MRG, Barnett AJ, et al. Cartilage-bone mismatch in the dysplastic trochlea. An MRI study. J Bone Joint Surg Br. 2006;88:688–91. https://doi.org/10.1302/0301-620X.88B5.16866.

    Article  PubMed  Google Scholar 

  30. Pfirrmann CW, Zanetti M, Romero J, Hodler J. Femoral trochlear dysplasia: MR findings. Radiology. 2000;216:858–64. https://doi.org/10.1148/radiology.216.3.r00se38858.

    Article  CAS  PubMed  Google Scholar 

  31. Dickens AJ, Morrell NT, Doering A, et al. Tibial tubercle-trochlear groove distance: defining normal in a pediatric population. J Bone Joint Surg Am. 2014;96:318–24. https://doi.org/10.2106/JBJS.M.00688.

    Article  PubMed  Google Scholar 

  32. Schoettle PB, Zanetti M, Seifert B, et al. The tibial tuberosity–trochlear groove distance; a comparative study between CT and MRI scanning. Knee. 2006;13:26–31. https://doi.org/10.1016/j.knee.2005.06.003.

    Article  PubMed  Google Scholar 

  33. Koshino T, Sugimoto K. New measurement of patellar height in the knees of children using the epiphyseal line midpoint. J Pediatr Orthop. 1989;9:216–8.

    Article  CAS  PubMed  Google Scholar 

  34. Insall J, Salvati E. Patella position in the normal knee joint. Radiology. 1971;101:101–4. https://doi.org/10.1148/101.1.101.

    Article  CAS  PubMed  Google Scholar 

  35. Miller TT, Staron RB, Feldman F. Patellar height on sagittal MR imaging of the knee. AJR Am J Roentgenol. 1996;167:339–41. https://doi.org/10.2214/ajr.167.2.8686598.

    Article  CAS  PubMed  Google Scholar 

  36. Caton J, Deschamps G, Chambat P, et al. Patella infera. Apropos of 128 cases. Rev Chir Orthop Reparatrice Appar Mot. 1982;68:317–25.

    CAS  PubMed  Google Scholar 

  37. Thévenin-Lemoine C, Ferrand M, Courvoisier A, et al. Is the caton-deschamps index a valuable ratio to investigate patellar height in children? J Bone Joint Surg Am. 2011;93:e35. https://doi.org/10.2106/JBJS.J.00759.

    Article  PubMed  Google Scholar 

  38. Grelsamer RP, Meadows S. The modified insall-salvati ratio for assessment of patellar height. Clin Orthop Relat Res. 1992:170–6.

    Google Scholar 

  39. Blackburne JS, Peel TE. A new method of measuring patellar height. J Bone Joint Surg Br. 1977;59:241–2. https://doi.org/10.1302/0301-620X.59B2.873986.

    Article  CAS  PubMed  Google Scholar 

  40. Merchant AC, Mercer RL, Jacobsen RH, Cool CR. Roentgenographic analysis of patellofemoral congruence. J Bone Joint Surg Am. 1974;56:1391–6.

    Article  CAS  PubMed  Google Scholar 

  41. Grelsamer RP, Newton PM, Staron RB. The medial-lateral position of the patella on routine magnetic resonance imaging: when is normal not normal? Arthroscopy. 1998;14:23–8. https://doi.org/10.1016/s0749-8063(98)70116-1.

    Article  CAS  PubMed  Google Scholar 

  42. Meyers AB, Laor T, Sharafinski M, Zbojniewicz AM. Imaging assessment of patellar instability and its treatment in children and adolescents. Pediatr Radiol. 2016;46:618–36. https://doi.org/10.1007/s00247-015-3520-8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aparisi Gómez, M.P., Simoni, P., Bazzocchi, A. (2023). Knee. In: Simoni, P., Aparisi Gómez, M.P. (eds) Essential Measurements in Pediatric Musculoskeletal Imaging. Springer, Cham. https://doi.org/10.1007/978-3-031-17735-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17735-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17734-7

  • Online ISBN: 978-3-031-17735-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics