Skip to main content

Abstract

This chapter is intended to provide a quick guide to the musculoskeletal measurements provided by EOS imaging and their interest in pediatric musculoskeletal pathology.

This kind of imaging, more than any other radiological technique, allows a wide variety of musculoskeletal measurements with a high grade of precision.

The measurements are obtained in physiological orthostatic conditions and are made on 2D biplanar images and 3D modeling.

An introduction will briefly explain the physical principles of EOS imaging and its most common applications in the pediatric field.

The second section is dedicated to the measurements that can be obtained for the pelvis (pelvic incidence, sacral slope, pelvic tilt, pelvic obliquity, axial rotation of the pelvis) and the spine (coronal balance, C7—central sacral line, Cobb’s angle, lateral flexion, sagittal vertical axis, CAM plumb line, spino-sacral angle, thoracic kyphosis, lumbar lordosis). The measurements of the spine can be obtained with two different types of references, with respect to the radiological plane or to the anatomical plane of the patient’s pelvis.

The third section of the chapter is dedicated to the measurements of the lower limb (femoral mechanical axis length, tibial mechanical axis length, functional length of the lower limb, anatomical length of the lower limb, femoral head diameter, femoral offset, femoral neck length, neck/shaft angle, femoral mechanical angle, tibial mechanical angle, mechanical tibiofemoral angle, hip-knee-shaft angle, femoral torsion angle, tibial torsion angle, femorotibial rotation, sagittal femorotibial angle).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wybier M, Bossard P. Musculoskeletal imaging in progress: the EOS imaging system. Joint Bone Spine. 2013;80(3):238–43. Epub 2012 Nov 22. https://doi.org/10.1016/j.jbspin.2012.09.018.

    Article  PubMed  Google Scholar 

  2. McKenna C, Wade R, Faria R, Yang H, Stirk L, Gummerson N, Sculpher M, Woolacott N. EOS 2D/3D X-ray imaging system: a systematic review and economic evaluation. Health Technol Assess. 2012;16(14):1–188. PMID: 22449757; PMCID: PMC4781036. https://doi.org/10.3310/hta16140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ilharreborde B, Dubousset J, Le Huec JC. Use of EOS imaging for the assessment of scoliosis deformities: application to postoperative 3D quantitative analysis of the trunk. Eur Spine J. 2014;23(Suppl 4):S397–405. Epub 2014 May 9. Erratum in: Eur Spine J. 2014 Jul;23 Suppl 4:S468. PMID: 24811688. https://doi.org/10.1007/s00586-014-3334-7.

    Article  PubMed  Google Scholar 

  4. Melhem E, Assi A, El Rachkidi R, Ghanem I, EOS(®). biplanar X-ray imaging: concept, developments, benefits, and limitations. J Child Orthop. 2016;10(1):1–14. Epub 2016 Feb 16. PMID: 26883033; PMCID: PMC4763151. https://doi.org/10.1007/s11832-016-0713-0.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Powell J, Gibly RF, Faulk LW, Carry P, Mayer SW, Selberg CM. Can EOS imaging substitute for conventional radiography in measurement of acetabular morphology in the young dysplastic hip? J Pediatr Orthop. 2020;40(6):294–9.

    Article  PubMed  Google Scholar 

  6. Legaye J, Duval-Beaupère G, Hecquet J, Marty C. Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J. 1998;7(2):99–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bailey JF, Shefi S, Soudack M, Kramer PA, Been E. Development of pelvic incidence and lumbar lordosis in children and adolescents. Anat Rec. 2019;302(12):2132–9.

    Article  Google Scholar 

  8. Mac-Thiong JM, Labelle H, Roussouly P. Pediatric sagittal alignment. Eur Spine J. 2011;20(Suppl 5):586–90.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chan CYW. Pelvic obliquity in adolescent idiopathic scoliosis planned for posterior spinal fusion: a preoperative analysis of 311 lower limb axis films. J Orthop Surg. 2019;27(2):2309499019857250.

    Article  Google Scholar 

  10. Rousseau MA, Brusson A, Lazennec JY. Assessment of the axial rotation of the pelvis with the EOS® imaging system: intra—and inter-observer reproducibility and accuracy study. Eur J Orthop Surg Traumatol. 2014;24(6):891–5.

    Article  PubMed  Google Scholar 

  11. O’Brien MF, Kuklo TR, Blanke KM, Lenke LG. Spinal deformity study group radiographic measurement manual. Memphis, TN: Medtronic Sofamar Danek; 2008. https://www.oref.org/docs/default-source/default-document-library/sdsg-radiographic-measuremnt-manual.pdf?sfvrsn=2.

    Google Scholar 

  12. Kim H, Kim HS, Moon ES, Yoon CS, Chung TS, Song HTS, et al. Scoliosis imaging: what radiologists should know. Radiographics. 2010;30(7):1823–42.

    Article  PubMed  Google Scholar 

  13. Lenke LG, Betz RR, Harms J, Bridwell KH, Clements DH, Lowe TG, et al. Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am. 2001;83(8):1169–81.

    Article  CAS  PubMed  Google Scholar 

  14. van den Bogaart M, van Royen B, Haanstra TM, et al. Predictive factors for brace treatment outcome in adolescent idiopathic scoliosis: a best-evidence synthesis. Eur Spine J. 2019;28:511–25. https://doi.org/10.1007/s00586-018-05870-6.

    Article  PubMed  Google Scholar 

  15. Gangnet V, Pomero R, Dumas W, et al. Variability of the spine and pelvis location with respect to the gravity line: a three-dimensional stereoradiographic study using a force platform. Vital Surg Radiol Anat. 2003;25:424–33. https://doi.org/10.1007/s00276-003-0154-6.

    Article  CAS  PubMed  Google Scholar 

  16. Legaye J, Duval-Beaupere G. Sagittal plane alignment of the spine and gravity: a radiological and clinical evaluation. Acta Orthop Belg. 2005;71:213–20.

    PubMed  Google Scholar 

  17. Sangondimath G, Mallepally AR, Marathe N, Salimath S, Chhabra HS. Radiographic analysis of the sagittal alignment of spine and pelvis in asymptomatic Indian population. Asian Spine J. 2022;16(1):107–18.

    Article  PubMed  Google Scholar 

  18. Le Huec JC, Thompson W, Moshinaly C, Barrey C, Faundez A. Sagittal balance of the spine. Eur Spine J. 2019;28:1889–905.

    Article  PubMed  Google Scholar 

  19. Mac-Thiong JM, Berthonnaud E, Dimar JR 2nd, Betz RR, Labelle H. Sagittal alignment of the spine and pelvis during growth. Spine (Phila Pa 1976). 2004;29(15):1642–7.

    Article  PubMed  Google Scholar 

  20. Kim JT, Lee DH, Lee HD, Shin HB, Park B, Park S, et al. Validity of the EOS-determined pelvic parameters and orientation with pelvic positional variation: a phantom study. Sci Rep. 2021;11(1):10468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Glaser DA, Doan J, Newton PO. Comparison of 3-dimensional spinal reconstruction accuracy: biplanar radiographs with EOS versus computed tomography. Spine (Phila Pa 1976). 2012;37(16):1391–7.

    Article  PubMed  Google Scholar 

  22. Szuper K, et al. Three-dimensional quantitative analysis of the proximal femur and the pelvis in children and adolescents using an upright biplanar slot-scanning X-ray system. Pediatr Radiol. 2015;45(3):411–21. https://doi.org/10.1007/s00247-014-3146-2.

    Article  PubMed  Google Scholar 

  23. Rampal V, et al. Lower-limb lengths and angles in children older than six years: reliability and reference values by EOS® stereoradiography. Orthop Traumatol Surg Res. 2018;104(3):389–95. https://doi.org/10.1016/j.otsr.2017.10.007.

    Article  CAS  PubMed  Google Scholar 

  24. Kinzinger H, Castiaux P. Les vices de torsion des membres inférieurs. Historique, évolution clinique. Acta Orthop Belg. 1977;43:379–470.

    CAS  PubMed  Google Scholar 

  25. Chaudier P, Villa V, Neyre P. Traité EM Consulte podologie: anomalie de torsion du squelette. Podologie. 2015:13. https://doi.org/10.1016/S0292-062X(15)60422-6.

  26. Gulan G, et al. Femoral neck anteversion: values, development, measurement, common problems. Coll Antropol. 2000;24(2):521–7.

    CAS  PubMed  Google Scholar 

  27. Lobenhoffer P, Galla M, Agneskirchner JD. Rotational osteotomies of the femur and the tibia, from: osteotomies around the knee: indications, planning, surgical techniques using plate fixator. Stuttgart, New York.: Distributed by Thieme: Davos: AO Publishing; 2008.

    Google Scholar 

  28. Gaumétou E, et al. EOS analysis of lower extremity segmental torsion in children and young adults. Orthop Traumatol Surg Res. 2014;100(1):147–51. https://doi.org/10.1016/j.otsr.2013.09.010.

    Article  PubMed  Google Scholar 

  29. Demey G, Lustig S, Servien E, Neyret P. Genu recurvatum osseux. EMC-Appareil Locomoteur. 2013;5:0246–521.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro De Leucio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Leucio, A., Tenisch, E., Zambelli, P.Y., Omoumi, P. (2023). EOS Imaging. In: Simoni, P., Aparisi Gómez, M.P. (eds) Essential Measurements in Pediatric Musculoskeletal Imaging. Springer, Cham. https://doi.org/10.1007/978-3-031-17735-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17735-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17734-7

  • Online ISBN: 978-3-031-17735-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics