Skip to main content

VeriMon: A Formally Verified Monitoring Tool

  • Conference paper
  • First Online:
Theoretical Aspects of Computing – ICTAC 2022 (ICTAC 2022)

Abstract

A runtime monitor observes a running system and checks whether the sequence of events the system generates satisfies a given specification. We describe the evolution of VeriMon: an expressive and efficient monitor that has been formally verified using the Isabelle proof assistant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://bitbucket.org/jshs/monpoly/src/master/.

  2. 2.

    https://traytel.bitbucket.io/verimon.

  3. 3.

    https://github.com/matthieugras/cppmon.

References

  1. Basin, D., Dardinier, T., Heimes, L., Krstić, S., Raszyk, M., Schneider, J., Traytel, D.: A formally verified, optimized monitor for metric first-order dynamic logic. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12166, pp. 432–453. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51074-9_25

    Chapter  Google Scholar 

  2. Basin, D., Klaedtke, F., Müller, S., Zălinescu, E.: Monitoring metric first-order temporal properties. J. ACM 62(2), 15:1–15:45 (2015). https://doi.org/10.1145/2699444

  3. Basin, D., Klaedtke, F., Zălinescu, E.: The MonPoly monitoring tool. In: Reger, G., Havelund, K. (eds.) RV-CuBES 2017. Kalpa Publications in Computing, vol. 3, pp. 19–28. EasyChair (2017). https://doi.org/10.29007/89hs

  4. Blech, J.O., Falcone, Y., Becker, K.: Towards certified runtime verification. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 494–509. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34281-3_34

    Chapter  Google Scholar 

  5. Bohrer, R., Tan, Y.K., Mitsch, S., Myreen, M.O., Platzer, A.: VeriPhy: verified controller executables from verified cyber-physical system models. In: Foster, J.S., Grossman, D. (eds.) PLDI 2018, pp. 617–630. ACM (2018). https://doi.org/10.1145/3192366.3192406

  6. Chattopadhyay, A., Mamouras, K.: A verified online monitor for metric temporal logic with quantitative semantics. In: Deshmukh, J., Ničković, D. (eds.) RV 2020. LNCS, vol. 12399, pp. 383–403. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60508-7_21

    Chapter  Google Scholar 

  7. Dauer, J.C., Finkbeiner, B., Schirmer, S.: Monitoring with verified guarantees. In: Feng, L., Fisman, D. (eds.) RV 2021. LNCS, vol. 12974, pp. 62–80. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88494-9_4

    Chapter  Google Scholar 

  8. Falcone, Y., Krstić, S., Reger, G., Traytel, D.: A taxonomy for classifying runtime verification tools. Int. J. Softw. Tools Technol. Transf. 23(2), 255–284 (2021). https://doi.org/10.1007/s10009-021-00609-z

    Article  Google Scholar 

  9. Finkbeiner, B., Oswald, S., Passing, N., Schwenger, M.: Verified Rust monitors for Lola specifications. In: Deshmukh, J., Ničković, D. (eds.) RV 2020. LNCS, vol. 12399, pp. 431–450. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60508-7_24

    Chapter  Google Scholar 

  10. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In: Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp. 103–117. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12251-4_9

    Chapter  Google Scholar 

  11. Havelund, K., Peled, D., Ulus, D.: First order temporal logic monitoring with BDDs. In: Stewart, D., Weissenbacher, G. (eds.) FMCAD 2017, pp. 116–123. IEEE (2017). https://doi.org/10.23919/FMCAD.2017.8102249

  12. Havelund, K., Peled, D., Ulus, D.: DejaVu: a monitoring tool for first-order temporal logic. In: MT@CPSWeek 2018, pp. 12–13. IEEE (2018). https://doi.org/10.1109/MT-CPS.2018.00013

  13. Huerta y Munive, J.J.: Relaxing safety for metric first-order temporal logic via dynamic free variables. In: Thao, D., Stolz, V. (eds.) RV 2022. LNCS, Springer (2022) (to appear)

    Google Scholar 

  14. Laurent, J., Goodloe, A., Pike, L.: Assuring the guardians. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 87–101. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23820-3_6

    Chapter  Google Scholar 

  15. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL - A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

  16. Raszyk, M.: Efficient, Expressive, and Verified Temporal Query Evaluation. Ph.D. thesis, ETH Zürich (2022). https://doi.org/10.3929/ethz-b-000553221

  17. Rizaldi, A., et al.: Formalising and monitoring traffic rules for autonomous vehicles in isabelle/HOL. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 50–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66845-1_4

    Chapter  Google Scholar 

  18. Schneider, J., Basin, D., Krstić, S., Traytel, D.: A formally verified monitor for metric first-order temporal logic. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 310–328. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9_18

    Chapter  Google Scholar 

  19. Vouillon, J., Balat, V.: From bytecode to JavaScript: the js_of_ocaml compiler. Softw. Pract. Exp. 44(8), 951–972 (2014). https://doi.org/10.1002/spe.2187

    Article  Google Scholar 

  20. Zingg, S., Krstić, S., Raszyk, M., Schneider, J., Traytel, D.: Verified first-order monitoring with recursive rules. In: TACAS 2022. LNCS, vol. 13244, pp. 236–253. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99527-0_13

    Chapter  Google Scholar 

Download references

Acknowledgments

Research on VeriMon has been supported by the Swiss National Science Foundation grant “Big Data Monitoring” (167162), the US Air Force grant “Monitoring at Any Cost” (FA9550-17-1-0306), and a Novo Nordisk Foundation Start Package grant (NNF20OC0063462). The authors are listed in alphabetical order regardless of individual contributions or seniority.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitriy Traytel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Basin, D. et al. (2022). VeriMon: A Formally Verified Monitoring Tool. In: Seidl, H., Liu, Z., Pasareanu, C.S. (eds) Theoretical Aspects of Computing – ICTAC 2022. ICTAC 2022. Lecture Notes in Computer Science, vol 13572. Springer, Cham. https://doi.org/10.1007/978-3-031-17715-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17715-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17714-9

  • Online ISBN: 978-3-031-17715-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics