Skip to main content

Visualization Concept for Representing Capability Matchmaking Results in a Virtual Environment

  • Conference paper
  • First Online:
Flexible Automation and Intelligent Manufacturing: The Human-Data-Technology Nexus (FAIM 2022)

Abstract

The traditional production system design and reconfiguration planning are manual processes. The lately developed capability matchmaking system aims to improve the production system design with a more intelligent design approach that automates the search for feasible resource combinations to specific product requirements. Virtual reality concepts and virtual manufacturing can bring more immersivity, perceptual intuition and interaction to the design process, and thus speed it up. 3D graphical visualizations of a production system and its resources can help in identifying problems in the reconfiguration of industrial equipment. The result from existing capability matchmaking system in XML format is not intuitive for the designer. Additionally, it is very difficult to analyze the proposed resources based on the textual description. To enhance the efficiency and performance of the existing capability matchmaking system, especially how to present and visualize the possible resource combinations inside the result is seen as an essential step towards virtual and smart manufacturing. This research provides an approach to visualize the result of capability matchmaking system in a virtual simulation environment with a use case example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo, D., Li, M., Lyu, Z., Kang, K., Wu, W., Zhong, R. and Huang, G.: Synchroperation in industry 4.0 manufacturing. Int. J. Prod. Econ. 238, 108171 (2021)

    Google Scholar 

  2. Demoly, F., Andre, J.: Industry 4.0. Wiley StatsRef: Statistics Reference Online (2021)

    Google Scholar 

  3. Santos, B., Charrua, F., Lima, T.: Challenges and opportunities towards an industry 4.0 production. Trans. Eng. Technol. (2019)

    Google Scholar 

  4. Trzepiecinski, T., dell'isola, F.: Implementation of the industry 4.0 manufacturing-new systems, Technol. Outcomes (2020)

    Google Scholar 

  5. Brecher, C., Wein, S., Xu, X., Storms, S., Herfs, W.: Simulation framework for virtual robot programming in reconfigurable production systems. Procedia CIRP 86, 98–103 (2019)

    Article  Google Scholar 

  6. Michniewicz, J., Reinhart, G., Boschert, S.: CAD-Based automated assembly planning for variable products in modular production systems. Procedia CIRP 44, 44–49 (2016)

    Article  Google Scholar 

  7. Ribeiro da Silva, E., Angelis, J., de Lima, E.: In pursuit of digital manufacturing. Procedia Manuf. 28, 63–69 (2019)

    Google Scholar 

  8. Saxena, P., Papanikolaou, M., Pagone, E., Salonitis, K., Jolly, M.: Digital Manufacturing for foundries 4.0. Light metals (2020)

    Google Scholar 

  9. Panyam, G., Chilukuri, L., Sriramula, V., Patil, A., Veerappan, S., Main, S., Ghanathey, A.: Impact of digital manufacturing in industrial transformation. industry 4.0 and advanced manufacturing (2021)

    Google Scholar 

  10. Vidosav, M., Jankovic, G., Zivkov, S., Stojadinovic, S.: Digital Manufacturing in SMEs based on the context of the Industry 4.0 framework—one approach. Procedia Manuf. 54, 52–57 (2021)

    Google Scholar 

  11. Zhang, L., Longfei, Z., Ren, L., Laili, Y.: Modeling and simulation in intelligent manufacturing. Comput. Ind. 112 (2019)

    Google Scholar 

  12. Lämmle, A., Gust, S.: Automatic layout generation of robotic production cells in a 3D manufacturing simulation environment. In: Procedia CIRP (2019)

    Google Scholar 

  13. Santillan, G., Sierla, S., Karhela, T., Vyatkin, V.: Automatic generation of a simulation-based digital twin of an industrial process plant. In: IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, pp. 3084–3089 (2018)

    Google Scholar 

  14. Hermann, J., Ruebel, P., Wagner, A., Ruskowski, M.: A generic product and resource description to enable capability matchmaking for production as a service. IFAC-PapersOnLine. 53, 10899–10904 (2020)

    Article  Google Scholar 

  15. Malakuti, S., et al.: Challenges in skill-based engineering of industrial automation systems. EFTA. 23, 67–74 (2018)

    Google Scholar 

  16. Munker, S., Wildemann, P., Göppert, A., Brell-Cokcan, S., Schmitt, R.: Online capability-based resource allocation for on-site construction operations utilizing digital twin models. Constr. Rob. (2022)

    Google Scholar 

  17. Katti, B., Plociennik, C., Schweitzer, M.: GeSCo: exploring the edge beneath the cloud in decentralized manufacturing. Int. J. Adv. Syst. Meas. 11, 183–195 (2018)

    Google Scholar 

  18. Sormaz, D., Gouveia, R., Sarkar, A.: Rule based process selection of milling processes based on GD&T requirements. J. Prod. Eng. 21, 19–26 (2019)

    Article  Google Scholar 

  19. Liu, X., Alharbi, M., Best, J., Chen, J., Diehl, A., Firat, E., Rees, D., Wang, Q., Laramee, R.: Visualization resources: a starting point. (2021)

    Google Scholar 

  20. Kraus, M., Fuchs, J., Sommer, B., Klein, K., Engelke, U., Keim, D., Schreiber, F.: Immersive analytics with abstract 3D visualizations: a survey. Comput. Graph. Forum 10 (2021)

    Google Scholar 

  21. Karnik, N., Bora, U., Bhadri, K., Kadambi, P., Dhatrak, P.: A comprehensive study on current and future trends towards the characteristics and enablers of industry 4.0. J. Ind. Inf. Integr. 100294 (2021)

    Google Scholar 

  22. Bangsow, S.: 2D and 3D Visualization. (2020)

    Google Scholar 

  23. Järvenpää, E., Siltala, N., Hylli, O., Lanz, M.: Capability matchmaking software for rapid production system design and reconfiguration planning. Procedia CIRP. 97, 435–440 (2021)

    Article  Google Scholar 

  24. Järvenpää, E., Siltala, N., Hylli, O., Lanz, M.: Capability matchmaking procedure to support rapid configuration and re-configuration of production systems. Procedia Manuf. 11, 1053–1060 (2017)

    Article  Google Scholar 

  25. Mokos, K., Katsaros, P.: A survey on the formalisation of system requirements and their validation. Array. 7 (2020)

    Google Scholar 

  26. Chauncey, W.: Heuristic evaluation. In: Chauncey, W. (eds.) User Interface Inspection Methods, pp. 1–32. Morgan Kaufmann (2014). https://doi.org/10.1016/B978-0-12-410391-7.00001-4

Download references

Acknowledgments

This research has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 101017141.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongwei Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, R., Lanz, M., Siltala, N. (2023). Visualization Concept for Representing Capability Matchmaking Results in a Virtual Environment. In: Kim, KY., Monplaisir, L., Rickli, J. (eds) Flexible Automation and Intelligent Manufacturing: The Human-Data-Technology Nexus. FAIM 2022. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-17629-6_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17629-6_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17628-9

  • Online ISBN: 978-3-031-17629-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics