Skip to main content

Accelerating Battery Simulations by Using High Performance Computing and Opportunities with Machine Learning

  • Chapter
  • First Online:
Computer Aided Engineering of Batteries

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 62))

  • 632 Accesses

Abstract

The US Department of Energy (DOE) estimates that the battery pack cost of $60 per kilowatt-hour while increasing the driving range to over 300 miles and vehicle charging under 15 min or less would enable mass penetration of electric vehicles in the USA by 2030. These projections are based on the currently available high-density cell chemistry combined with a system level design and optimized electrodes. Electrodes for current state-of-the-art lithium-ion cell technology are fabricated from electrode slurry comprising of active material, polymeric binder, and conductive diluent such as carbon black that are coated on metal current collectors such as copper and aluminum. Given these challenging requirements for development of electrical energy storage devices for future transportation needs, a predictive simulation capability which can accelerate design by considering performance and safety implications of different geometry, materials, and chemistry choices is required. In this chapter, we discuss our state-of-the-art three-dimensional modeling framework, providing examples on battery performance and safety simulations. We also present approaches to use machine learning in the context of large datasets that are becoming available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Significant portion of the derivations presented in this section were first published in [2] and are reproduced with permissions from Elsevier.

  2. 2.

    The results presented in this section were first published in [46] and are reproduced with permissions from Elsevier.

References

  1. Allu S, Kalnaus S, Elwasif W, Simunovic S, Turner JA, Pannala S (2014) A new open computational framework for highly-resolved coupled three-dimensional multiphysics simulations of Li-ion cells. J. Power Sources 246:876–886

    Article  CAS  Google Scholar 

  2. Allu S, Kalnaus S, Simunovic S, Nanda J, Turner JA, Pannala S (2016) A three-dimensional meso-macroscopic model for Li-ion intercalation batteries. J Power Sources 325:42–50

    Article  CAS  Google Scholar 

  3. Alzate-Vargas L, Allu S, Blau SM, ClarkSpotte-Smith EW, Persson KA, Fattebert J-L (2021) Insight into SEI growth in Li-ion batteries using molecular dynamics and accelerated chemical reactions. J Phys Chem C 125(34):18588–18596

    Article  CAS  Google Scholar 

  4. Anderson TB, Jackson R (1967) Fluid mechanical description of fluidized beds. Equations of motion. Ind Eng Chem Fundam 6(4):527–539

    Article  CAS  Google Scholar 

  5. Aykol M, Gopal CB, Anapolsky A, Herring PK, van Vlijmen B, Berliner MD, Bazant MZ, Braatz RD, Chueh WC, Storey BD (2021) Perspective—combining physics and machine learning to predict battery lifetime. J Electrochem Soc 168(3):030525

    Article  CAS  Google Scholar 

  6. Bae C-J, Erdonmez CK, Halloran JW, Chiang Y-M (2013) Design of battery electrodes with dual-scale porosity to minimize tortuosity and maximize performance. Adv Mat 25(9):1254–1258

    Article  CAS  Google Scholar 

  7. Behler J, Parrinello M (2007) Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys Rev Lett 98:146401

    Article  Google Scholar 

  8. Ben-David S, Hrubeš P, Moran S, Shpilka A, Yehudayoff A (2019) Learnability can be undecidable. Nat Mach Intel 1(1):44–48

    Article  Google Scholar 

  9. Blau SM, Patel HD, Spotte-Smith EWC, Xie X, Dwaraknath S, Persson KA (2021) A chemically consistent graph architecture for massive reaction networks applied to solid-electrolyte interphase formation. Chem Sci 12(13):4931–4939

    Article  CAS  Google Scholar 

  10. Bowler DR, Miyazaki T (2012) O(N) methods in electronic structure calculations. Rep Prog Phys 75(3):036503

    Article  CAS  Google Scholar 

  11. Carter EA, Ciccotti G, Hynes JT, Kapral R (1989) Constrained reaction coordinate dynamics for the simulation of rare events. Chem Phys Lett 156(5):472–477

    Article  CAS  Google Scholar 

  12. Deringer VL (2020) Modelling and understanding battery materials with machine-learning-driven atomistic simulations. J Phys Energy 2(4):041003

    Article  CAS  Google Scholar 

  13. Deringer VL, Caro MA, Csányi G (2019) Machine learning interatomic potentials as emerging tools for materials science. Adv Mat 31(46):1902765

    Article  CAS  Google Scholar 

  14. De Vidts P, White RE (1997) Governing equations for transport in porous electrodes. J Electrochem Soc 144(4):1343–1353

    Article  Google Scholar 

  15. Doyle M, Fuller TF, Newman J (1993) Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J Electrochem Soc 140(6):1526–1533

    Article  CAS  Google Scholar 

  16. Fattebert J-L, Osei-Kuffuor D, Draeger EW, Ogitsu T, Krauss WD (2016) Modeling dilute solutions using first-principles molecular dynamics: computing more than a million atoms with over a million cores. In: SC ’16: proceedings of the international conference for high performance computing, networking, storage and analysis, pp 12–22

    Google Scholar 

  17. Friederich P, Häse F, Proppe J, Aspuru-Guzik A (2021) Machine-learned potentials for next-generation matter simulations. Nat Mat 20:750–761

    Article  CAS  Google Scholar 

  18. Gayon-Lombardo A, Mosser L, Brandon NP, Cooper SJ (2020) Pores for thought: generative adversarial networks for stochastic reconstruction of 3d multi-phase electrode microstructures with periodic boundaries. NPJ Comput Mat 6(1):1–11

    Google Scholar 

  19. Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural message passing for quantum chemistry. In: Precup D, Teh YW (eds) Proceedings of the 34th international conference on machine learning, vol 70. Proceedings of machine learning research, pp 1263–1272. PMLR

    Google Scholar 

  20. Gissinger JR, Jensen BD, Wise KE (2017) Modeling chemical reactions in classical molecular dynamics simulations. Polymer 128:211–217

    Article  CAS  Google Scholar 

  21. Grambow CA, Pattanaik L, Green WH (2020) Deep learning of activation energies. J Phys Chem Lett 11(8):2992–2997

    Article  CAS  Google Scholar 

  22. Gu WB, Wang CY, Li SM, Geng MM, Liaw BY (1999) Modeling discharge and charge characteristics of nickel–metal hydride batteries. Electro Acta 44(25):4525–4541

    Article  CAS  Google Scholar 

  23. Heroux MA, Bartlett RA, Howle VE, Hoekstra RE, Hu JJ, Kolda TG, Lehoucq RB, Long KR, Pawlowski RP, Phipps ET, et al. (2005) An overview of the Trilinos project. ACM Trans Math Softw 31(3):397–423

    Article  Google Scholar 

  24. Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE, Woodward CS (2005) Sundials: suite of nonlinear and differential/algebraic equation solvers. ACM Trans Math Softw 31(3):363–396

    Article  Google Scholar 

  25. Jiang Z, Li J, Yang Y, Mu L, Wei C, Yu X, Pianetta P, Zhao K, Cloetens P, Lin F, et al (2020) Machine-learning-revealed statistics of the particle-carbon/binder detachment in lithium-ion battery cathodes. Nat Commun 11(1):1–9

    Google Scholar 

  26. Li W, Sengupta N, Dechent P, Howey D, Annaswamy A, Sauer DU (2021) Online capacity estimation of lithium-ion batteries with deep long short-term memory networks. J Power Sources 482:228863

    Article  CAS  Google Scholar 

  27. Li W, Zhang J, Ringbeck F, Jöst D, Zhang L, Wei Z, Sauer DU (2021) Physics-informed neural networks for electrode-level state estimation in lithium-ion batteries. J Power Sources, 506:230034

    Article  CAS  Google Scholar 

  28. Long JW, Dunn B, Rolison DR, White HS (2004) Three-dimensional battery architectures. Chem Rev 104(10):4463–4492

    Article  CAS  Google Scholar 

  29. Magnussen OM, Groß A (2019) Toward an atomic-scale understanding of electrochemical interface structure and dynamics. J Am Chem Soc 141(12):4777–4790

    Article  CAS  Google Scholar 

  30. Naguib M, Allu S, Simunovic S, Li J, Wang H, Dudney NJ (2018) Limiting internal short-circuit damage by electrode partition for impact-tolerant li-ion batteries. Joule 2(1):155–167

    Article  CAS  Google Scholar 

  31. Pannala S (2010) Computational gas-solids flows and reacting systems: theory, methods and practice: theory, methods and practice. IGI Global, Pennsylvania

    Google Scholar 

  32. Pannala S, Turner JA, Allu S, Elwasif WR, Kalnaus S, Simunovic S, Kumar A, Billings JJ, Wang H, Nanda J (2015) Multiscale modeling and characterization for performance and safety of lithium-ion batteries. J Appl Phys 118(7):072017

    Article  Google Scholar 

  33. Pietsch P, Ebner M, Marone F, Stampanoni M, Wood V (2018) Determining the uncertainty in microstructural parameters extracted from tomographic data. Sustain Energy Fuels 2(3):598–605

    Article  CAS  Google Scholar 

  34. Qian G, Zhang J, Chu S-Q, Li J, Zhang K, Yuan Q, Ma Z-F, Pianetta P, Li L, Jung K, et al (2021) Understanding the mesoscale degradation in nickel-rich cathode materials through machine-learning-revealed strain–redox decoupling. ACS Energy Lett 6(2):687–693

    Article  CAS  Google Scholar 

  35. Qu X, Jain A, Rajput NN, Cheng L, Zhang Y, Ong SP, Brafman M, Maginn E, Curtiss LA, Persson KA (2015) The electrolyte genome project: A big data approach in battery materials discovery. Comput Mat Sci 103:56–67

    Article  CAS  Google Scholar 

  36. Roberts M, Johns P, Owen J, Brandell D, Edstrom K, El Enany G, Guery C, Golodnitsky D, Lacey M, Lecoeur C, et al (2011) 3d lithium ion batteries—from fundamentals to fabrication. J Mat Chem 21(27):9876–9890

    Article  CAS  Google Scholar 

  37. Roman D, Saxena S, Robu V, Pecht M, Flynn D (2021) Machine learning pipeline for battery state-of-health estimation. Nat Mach Intel 3(5):447–456

    Article  Google Scholar 

  38. Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7(3):856–869

    Article  Google Scholar 

  39. Scharf J, Chouchane M, Finegan DP, Lu B, Redquest C, Kim M-c, Yao W, Franco AA, Gostovic D, Liu Z, et al (2021) Bridging nano and micro-scale x-ray tomography for battery research by leveraging artificial intelligence. Preprint. arXiv:2107.07459

    Google Scholar 

  40. Severson KA, Attia PM, Jin N, Perkins N, Jiang B, Yang Z, Chen MH, Aykol M, Herring PK, Fraggedakis D, et al (2019) Data-driven prediction of battery cycle life before capacity degradation. Nat Energy 4(5):383–391

    Article  Google Scholar 

  41. Slattery JC (1972) Momentum, energy, and mass transfer in continua. McGraw-Hill, New York

    Google Scholar 

  42. St. John PC, Guan Y, Kim Y, Kim S, Paton RS (2020) Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost. Nat Commun 11:2328

    Article  CAS  Google Scholar 

  43. Sundararaman R, Schwarz K (2017) Evaluating continuum solvation models for the electrode-electrolyte interface: challenges and strategies for improvement. J Chem Phys 146(8):084111

    Article  Google Scholar 

  44. Tu H, Moura S, Fang H (2021) Integrating electrochemical modeling with machine learning for lithium-ion batteries. Preprint arXiv:2103.11580

    Google Scholar 

  45. Wang CY, Gu WB, Liaw BY (1998) Micro-macroscopic coupled modeling of batteries and fuel cells I. Model development. J Electrochem Soc 145(10):3407–3417

    Article  CAS  Google Scholar 

  46. Wang H, Leonard DN, Meyer III HM, Watkins TR, Kalnaus S, Simunovic S, Allu S, Turner JA (2020) Microscopic analysis of copper current collectors and mechanisms of fragmentation under compressive forces. Mat Today Energy 17:100479

    Article  Google Scholar 

  47. Ward L, Dandu N, Blaiszik B, Narayanan B, Assary RS, Redfern PC, Foster I, Curtiss LA (2021) Graph-based approaches for predicting solvation energy in multiple solvents: open datasets and machine learning models. J Phys Chem A 125(27):5990–5998

    Article  CAS  Google Scholar 

  48. Wen M, Blau SM, Spotte-Smith EWC, Dwaraknath S, Persson KA (2021) BonDNet: a graph neural network for the prediction of bond dissociation energies for charged molecules. Chem Sci 12:1858–1868

    Article  CAS  Google Scholar 

  49. Yao K, Herr JE, Toth DW, Mckintyre R, Parkhill J (2018) The tensormol-0.1 model chemistry: a neural network augmented with long-range physics. Chem Sci 9:2261–2269

    Article  CAS  Google Scholar 

  50. Yun K-S, Pai SJ, Yeo BC, Lee K-R, Kim S-J, Han SS (2017) Simulation protocol for prediction of a solid-electrolyte interphase on the silicon-based anodes of a lithium-ion battery: ReaxFF reactive force field. J Phys Chem Lett 8(13):2812–2818

    Article  CAS  Google Scholar 

  51. Zheng H, Li J, Song X, Liu G, Battaglia VS (2012) A comprehensive understanding of electrode thickness effects on the electrochemical performances of li-ion battery cathodes. Electro Acta 71:258–265

    Article  CAS  Google Scholar 

  52. Zuo Y, Chen C, Li X, Deng Z, Chen Y, Behler J, Csányi G, Shapeev AV, Thompson AP, Wood MA, Ong SP (2020) Performance and cost assessment of machine learning interatomic potentials. J Phys Chem A 124(4):731–745

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the U.S. Department of Energy’s Vehicle Technologies Office at Oak Ridge National Laboratory under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. The US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srikanth Allu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Allu, S., Fattebert, JL., Wang, H., Simunovic, S., Pannala, S., Turner, J. (2023). Accelerating Battery Simulations by Using High Performance Computing and Opportunities with Machine Learning. In: Santhanagopalan, S. (eds) Computer Aided Engineering of Batteries. Modern Aspects of Electrochemistry, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-031-17607-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17607-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17606-7

  • Online ISBN: 978-3-031-17607-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics