Skip to main content

Mesoscale Modeling and Analysis in Electrochemical Energy Systems

  • Chapter
  • First Online:
Computer Aided Engineering of Batteries

Abstract

Electrochemical energy systems are critical from an environmental perspective and provide a pathway to a sustainable energy future. The widespread adoption of these systems is achieved through various applications such as electrically powered aircraft, vehicles, and grid-scale storage. Within these devices, electrochemical physics originates from reaction-coupled interfacial and transport interactions. Advanced computational modeling strategies consider these interactions at multiple temporal and length scales from atomistic to system level. In this context, mesoscale modeling plays a pivotal role in resolving the intermediate length scales, at the intersection of material characteristics and device operation scale. These modeling strategies are contingent upon resolving the fundamental reactive-transport interactions through solving conservation laws. In this chapter, we focus on such a mesoscale modeling methodology accomplished in the context of intercalation electrodes such as lithium-ion batteries, conversion electrodes such as lithium-sulfur batteries, and flow electrodes such as polymer electrolyte fuel cells. The physics-based mass and charge conservation equations are elucidated first which is followed by key examples pertaining to the performance and durability of such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu Y, Zhu Y, Cui Y (2019) Challenges and opportunities towards fast-charging battery materials. Nat Energy 4(7):540–550

    Article  Google Scholar 

  2. Choi JW, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater 1(4):1–16

    Article  Google Scholar 

  3. Wagner FT, Lakshmanan B, Mathias MF (2010) Electrochemistry and the future of the automobile. J Phys Chem Lett 1(14):2204–2219

    Article  CAS  Google Scholar 

  4. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104(10):4271–4302

    Article  CAS  Google Scholar 

  5. Armand M, Tarascon J-M (2008) Building better batteries. Nature 451(7179):652–657

    Article  CAS  Google Scholar 

  6. Ahmed S et al (2017) Enabling fast charging–a battery technology gap assessment. J Power Sources 367:250–262

    Article  CAS  Google Scholar 

  7. Fear C et al (2021) Mechanistic underpinnings of thermal gradient induced inhomogeneity in lithium plating. Energy Storage Mater 35:500–511

    Article  Google Scholar 

  8. Kabra V, et al (2020) Mechanistic analysis of microstructural attributes to lithium plating in fast charging. ACS Applied Materials & Interfaces 12(50):55795–55808

    Google Scholar 

  9. Taiwo OO et al (2017) Investigation of cycling-induced microstructural degradation in silicon-based electrodes in lithium-ion batteries using X-ray nanotomography. Electrochim Acta 253:85–92

    Article  CAS  Google Scholar 

  10. Zielke L et al (2015) Three-phase multiscale modeling of a LiCoO2 cathode: combining the advantages of FIB–SEM imaging and x-ray tomography. Adv Energy Mater 5(5):1401612

    Article  Google Scholar 

  11. Nelson GJ et al (2017) Transport-geometry interactions in Li-ion cathode materials imaged using X-ray nanotomography. J Electrochem Soc 164(7):A1412

    Article  CAS  Google Scholar 

  12. Ebner M et al (2013) X-ray tomography of porous, transition metal oxide based lithium ion battery electrodes. Adv Energy Mater 3(7):845–850

    Article  CAS  Google Scholar 

  13. Mistry A et al (2016) Analysis of long-range interaction in lithium-ion battery electrodes. J Electrochem Energy Convers Storage 13(3):37

    Article  Google Scholar 

  14. Ji Y, Zhang Y, Wang C-Y (2013) Li-ion cell operation at low temperatures. J Electrochem Soc 160(4):A636

    Article  CAS  Google Scholar 

  15. Mistry AN, Smith K, Mukherjee PP (2018) Secondary-phase stochastics in lithium-ion battery electrodes. ACS Appl Mater Interfaces 10(7):6317–6326

    Article  CAS  Google Scholar 

  16. Mistry AN, Smith K, Mukherjee PP (2018) Electrochemistry coupled mesoscale complexations in electrodes lead to thermo-electrochemical extremes. ACS Appl Mater Interfaces 10(34):28644–28655

    Article  CAS  Google Scholar 

  17. Chen C-F, Verma A, Mukherjee PP (2017) Probing the role of electrode microstructure in the lithium-ion battery thermal behavior. J Electrochem Soc 164(11):E3146

    Article  CAS  Google Scholar 

  18. Vetter J et al (2005) Ageing mechanisms in lithium-ion batteries. J Power Sources 147(1–2):269–281

    Article  CAS  Google Scholar 

  19. Barré A et al (2013) A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J Power Sources 241:680–689

    Article  Google Scholar 

  20. Broussely M et al (2005) Main aging mechanisms in li ion batteries. J Power Sources 146(1–2):90–96

    Article  CAS  Google Scholar 

  21. Yoshida T et al (2006) Degradation mechanism and life prediction of lithium-ion batteries. J Electrochem Soc 153(3):A576

    Article  CAS  Google Scholar 

  22. Chen C-F, Barai P, Mukherjee PP (2016) An overview of degradation phenomena modeling in lithium-ion battery electrodes. Curr Opin Chem Eng 13:82–90

    Article  Google Scholar 

  23. Petzl M, Kasper M, Danzer MA (2015) Lithium plating in a commercial lithium-ion battery–a low-temperature aging study. J Power Sources 275:799–807

    Article  CAS  Google Scholar 

  24. Fan J, Tan S (2006) Studies on charging lithium-ion cells at low temperatures. J Electrochem Soc 153(6):A1081

    Article  CAS  Google Scholar 

  25. Senyshyn A et al (2015) Low-temperature performance of li-ion batteries: the behavior of lithiated graphite. J Power Sources 282:235–240

    Article  CAS  Google Scholar 

  26. Smart MC, Ratnakumar BV (2011) Effects of electrolyte composition on lithium plating in lithium-ion cells. J Electrochem Soc 158(4):A379

    Article  CAS  Google Scholar 

  27. Bugga RV, Smart MC (2010) Lithium plating behavior in lithium-ion cells. ECS Trans 25(36):241

    Article  Google Scholar 

  28. von Lüders C et al (2017) Lithium plating in lithium-ion batteries investigated by voltage relaxation and in situ neutron diffraction. J Power Sources 342:17–23

    Article  Google Scholar 

  29. Ge H et al (2017) Investigating lithium plating in lithium-ion batteries at low temperatures using electrochemical model with NMR assisted parameterization. J Electrochem Soc 164(6):A1050

    Article  CAS  Google Scholar 

  30. Wandt J et al (2018) Quantitative and time-resolved detection of lithium plating on graphite anodes in lithium ion batteries. Mater Today 21(3):231–240

    Article  CAS  Google Scholar 

  31. Schindler S et al (2016) Voltage relaxation and impedance spectroscopy as in-operando methods for the detection of lithium plating on graphitic anodes in commercial lithium-ion cells. J Power Sources 304:170–180

    Article  CAS  Google Scholar 

  32. Valøen LO, Reimers JN (2005) Transport properties of LiPF6-based Li-ion battery electrolytes. J Electrochem Soc 152(5):A882

    Article  Google Scholar 

  33. Vishnugopi BS, Verma A, Mukherjee PP (2020) Fast charging of lithium-ion batteries via electrode engineering. J Electrochem Soc 167(9):090508

    Article  CAS  Google Scholar 

  34. Verma P, Maire P, Novák P (2010) A review of the features and analyses of the solid electrolyte interphase in li-ion batteries. Electrochim Acta 55(22):6332–6341

    Article  CAS  Google Scholar 

  35. Kotak N et al (2018) Electrochemistry-mechanics coupling in intercalation electrodes. J Electrochem Soc 165(5):A1064

    Article  CAS  Google Scholar 

  36. Barai P, Mukherjee PP (2013) Stochastic analysis of diffusion induced damage in lithium-ion battery electrodes. J Electrochem Soc 160(6):A955

    Article  CAS  Google Scholar 

  37. Guo M, Sikha G, White RE (2010) Single-particle model for a lithium-ion cell: thermal behavior. J Electrochem Soc 158(2):A122

    Article  Google Scholar 

  38. Christensen J, Newman J (2003) Effect of anode film resistance on the charge/discharge capacity of a lithium-ion battery. J Electrochem Soc 150(11):A1416

    Article  CAS  Google Scholar 

  39. Christensen J, Newman J (2004) A mathematical model for the lithium-ion negative electrode solid electrolyte interphase. J Electrochem Soc 151(11):A1977

    Article  CAS  Google Scholar 

  40. Fang X, Peng H (2015) A revolution in electrodes: recent progress in rechargeable lithium–sulfur batteries. Small 11(13):1488–1511

    Article  CAS  Google Scholar 

  41. Hagen M, Hanselmann D, Ahlbrecht K, Maça R, Gerber D, Tübke J (2015) Lithium–sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells. Adv Energy Mater 5(16):1401986

    Article  Google Scholar 

  42. Wild M, O’neill L, Zhang T, Purkayastha R, Minton G, Marinescu M, Offer G (2015) Lithium sulfur batteries, a mechanistic review. Energy Environ Sci 8(12):3477–3494

    Article  CAS  Google Scholar 

  43. Zhang SS (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources 231:153–162

    Article  CAS  Google Scholar 

  44. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li–O 2 and li–S batteries with high energy storage. Nat Mater 11(1):19–29

    Article  CAS  Google Scholar 

  45. Mistry A, Mukherjee PP (2017) Precipitation–microstructure interactions in the li-sulfur battery electrode. J Phys Chem C 121(47):26256–26264

    Article  CAS  Google Scholar 

  46. Chen C-F, Mistry A, Mukherjee PP (2017) Probing impedance and microstructure evolution in lithium–sulfur battery electrodes. J Phys Chem C 121(39):21206–21216

    Article  CAS  Google Scholar 

  47. Mistry AN, Mukherjee PP (2018) Electrolyte transport evolution dynamics in lithium–sulfur batteries. J Phys Chem C 122(32):18329–18335

    Article  CAS  Google Scholar 

  48. Mistry AN, Mukherjee PP (2018) “Shuttle” in polysulfide shuttle: friend or foe? J Phys Chem C 122(42):23845–23851

    Article  CAS  Google Scholar 

  49. Cano ZP et al (2018) Batteries and fuel cells for emerging electric vehicle markets. Nat Energy 3(4):279–289

    Article  Google Scholar 

  50. Mukherjee PP, Kang Q, Wang C-Y (2011) Pore-scale modeling of two-phase transport in polymer electrolyte fuel cells—progress and perspective. Energy Environ Sci 4(2):346–369

    Article  CAS  Google Scholar 

  51. Meng H, Wang C-Y (2005) Model of two-phase flow and flooding dynamics in polymer electrolyte fuel cells. J Electrochem Soc 152(9):A1733

    Article  CAS  Google Scholar 

  52. Pasaogullari U, Wang C-Y (2005) Two-phase modeling and flooding prediction of polymer electrolyte fuel cells. J Electrochem Soc 152(2):A380

    Article  CAS  Google Scholar 

  53. Pasaogullari U, Wang C-Y (2004) Two-phase transport and the role of micro-porous layer in polymer electrolyte fuel cells. Electrochim Acta 49(25):4359–4369

    Article  CAS  Google Scholar 

  54. Wang Y, Wang C-Y (2006) A non-isothermal, two-phase model for polymer electrolyte fuel cells. J Electrochem Soc 153(6):A1193

    Article  CAS  Google Scholar 

  55. Weber AZ, Darling RM, Newman J (2004) Modeling two-phase behavior in PEFCs. J Electrochem Soc 151(10):A1715

    Article  CAS  Google Scholar 

  56. Mukherjee PP, Wang C-Y (2006) Stochastic microstructure reconstruction and direct numerical simulation of the PEFC catalyst layer. J Electrochem Soc 153(5):A840

    Article  CAS  Google Scholar 

  57. Wang G, Mukherjee PP, Wang C-Y (2006) Direct numerical simulation (DNS) modeling of PEFC electrodes: part I. regular microstructure. Electrochim Acta 51(15):3139–3150

    Article  CAS  Google Scholar 

  58. Mukherjee PP, Wang C-Y (2007) Direct numerical simulation modeling of bilayer cathode catalyst layers in polymer electrolyte fuel cells. J Electrochem Soc 154(11):B1121

    Article  CAS  Google Scholar 

  59. Cetinbas FC et al (2017) Hybrid approach combining multiple characterization techniques and simulations for microstructural analysis of proton exchange membrane fuel cell electrodes. J Power Sources 344:62–73

    Article  CAS  Google Scholar 

  60. Cetinbas FC et al (2017) Microstructural analysis and transport resistances of low-platinum-loaded PEFC electrodes. J Electrochem Soc 164(14):F1596

    Article  CAS  Google Scholar 

  61. Cullen DA et al (2021) New roads and challenges for fuel cells in heavy-duty transportation. Nature, Energy:1–13

    Google Scholar 

  62. Weber AZ, Kusoglu A (2014) Unexplained transport resistances for low-loaded fuel-cell catalyst layers. J Mater Chem A 2(41):17207–17211

    Article  CAS  Google Scholar 

  63. Prokop M, Drakselova M, Bouzek K (2020) Review of the experimental study and prediction of Pt-based catalyst degradation during PEM fuel cell operation. Curr Opin Electrochem 20:20–27

    Article  CAS  Google Scholar 

  64. Ren P et al (2020) Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions. Prog Energy Combust Sci 80:100859

    Article  Google Scholar 

  65. Star AG, Fuller TF (2017) FIB-SEM tomography connects microstructure to corrosion-induced performance loss in PEMFC cathodes. J Electrochem Soc 164(9):F901

    Article  CAS  Google Scholar 

  66. Young AP, Stumper J, Gyenge E (2009) Characterizing the structural degradation in a PEMFC cathode catalyst layer: carbon corrosion. J Electrochem Soc 156(8):B913

    Article  CAS  Google Scholar 

  67. Grunewald JB et al (2019) Perspective—mesoscale physics in the catalyst layer of proton exchange membrane fuel cells. J Electrochem Soc 166(7):F3089

    Article  CAS  Google Scholar 

  68. Goswami N et al (2020) Corrosion-induced microstructural variability affects transport-kinetics interaction in PEM fuel cell catalyst layers. J Electrochem Soc 167(8):084519

    Article  CAS  Google Scholar 

  69. Mukherjee PP, Wang C-Y, Kang Q (2009) Mesoscopic modeling of two-phase behavior and flooding phenomena in polymer electrolyte fuel cells. Electrochim Acta 54(27):6861–6875

    Article  CAS  Google Scholar 

  70. Grunewald JB et al (2021) Two-phase dynamics and hysteresis in the PEM fuel cell catalyst layer with the lattice-Boltzmann method. J Electrochem Soc 168(2):024521

    Article  CAS  Google Scholar 

  71. Ryan EM, Mukherjee PP (2019) Mesoscale modeling in electrochemical devices—a critical perspective. Prog Energy Combust Sci 71:118–142

    Article  Google Scholar 

  72. National Science and Technology Council (US). Materials genome initiative for global competitiveness. Executive Office of the President, National Science and Technology Council, 2011

    Google Scholar 

  73. Ong SP et al (2013) Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput Mater Sci 68:314–319

    Article  CAS  Google Scholar 

  74. Amin R et al (2018) Electrochemical characterization of high energy density graphite electrodes made by freeze-casting. ACS Appl Energy Mater 1(9):4976–4981

    Article  CAS  Google Scholar 

  75. Yarlagadda V et al (2018) Boosting fuel cell performance with accessible carbon mesopores. ACS Energy Lett 3(3):618–621

    Article  CAS  Google Scholar 

  76. Cetinbas FC et al (2019) Effects of porous carbon morphology, agglomerate structure and relative humidity on local oxygen transport resistance. J Electrochem Soc 167(1):013508

    Article  Google Scholar 

  77. Mistry A, Mukherjee PP (2019) Deconstructing electrode pore network to learn transport distortion. Phys Fluids 31(12):122005

    Article  Google Scholar 

  78. Finegan DP, Cooper SJ (2019) Battery safety: data-driven prediction of failure. Joule 3(11):2599–2601

    Article  Google Scholar 

  79. Gayon-Lombardo A et al (2020) Pores for thought: generative adversarial networks for stochastic reconstruction of 3D multi-phase electrode microstructures with periodic boundaries. npj Comput Mater 6(1):1–11

    Article  Google Scholar 

  80. Kench S, Cooper SJ (2021) Generating three-dimensional structures from a two-dimensional slice with generative adversarial network-based dimensionality expansion. Nat Mach Intell:1–7

    Google Scholar 

Download references

Acknowledgments

Financial support in part from National Science Foundation (NSF grant: 1805215) is gratefully acknowledged. The authors acknowledge the American Society of Mechanical Engineers, American Chemical Society, Elsevier, the Electrochemical Society, and the Royal Society of Chemistry for the figures reproduced in this chapter from the referenced publications of their journals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha P. Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kabra, V., Goswami, N., Vishnugopi, B.S., Mukherjee, P.P. (2023). Mesoscale Modeling and Analysis in Electrochemical Energy Systems. In: Santhanagopalan, S. (eds) Computer Aided Engineering of Batteries. Modern Aspects of Electrochemistry, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-031-17607-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17607-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17606-7

  • Online ISBN: 978-3-031-17607-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics