Abstract
Process discovery techniques focus on learning a process model starting from a given set of logged traces. The majority of the discovery approaches, however, only consider one set of examples to learn from, i.e., the log itself. Some recent works on declarative process discovery, instead, advocated the usefulness of taking into account two different sets of traces (a.k.a. positive and negative examples), with the goal of learning a set of constraints that is able to discriminate which trace belongs to which set. Sometimes, however, too many possible sets of constraints might be available, thus nullifying the discovery effort. Therefore, some preference criteria would be helpful to guide the discovery process towards a set of constraints among the many. In this work, we present an approach for the discovery of declarative models providing the possibility, from the user viewpoint, of specifying preferences on activities and constraint templates to be used to build the final set of constraints. Such preferences are used to guide the discovery process, so that the output set will include, if possible, the preferred constraints, thus exploiting some expert knowledge about the desired outcome. The approach is grounded in a logic-based framework that provides a sound and formal meaning to the notion of expert preferences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Roughly speaking, two models are equivalent if they accept and reject the same traces. Such a notion of equivalence hints to the possibility that given two models \(M_1\) and \(M_2\), opting for the former or the latter will not change which traces will be accepted or rejected.
- 2.
Other models exist, of course, but, for the sake of clarity, we only mention two of them.
- 3.
The file declare_rules.txt can be found in the data directory.
- 4.
References
van der Aalst, W.M.P., De Masellis, R., Di Francescomarino, C., Ghidini, C.: Learning hybrid process models from events. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 59–76. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65000-5_4
van der Aalst, W.M.P., Pesic, M.: DecSerFlow: towards a truly declarative service flow language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 1–23. Springer, Heidelberg (2006). https://doi.org/10.1007/11841197_1
van der Aalst, W.M.P., Rubin, V.A., Verbeek, H.M.W., van Dongen, B.F., Kindler, E., Günther, C.W.: Process mining: a two-step approach to balance between underfitting and overfitting. Softw. Syst. Model. 9(1), 87–111 (2010)
van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)
Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable agent interaction in abductive logic programming: the SCIFF framework. ACM Trans. Comput. Log. 9(4), 29:1–29:43 (2008)
Armas-Cervantes, A., Baldan, P., Dumas, M., García-Bañuelos, L.: Behavioral comparison of process models based on canonically reduced event structures. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 267–282. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10172-9_17
Bellodi, E., Riguzzi, F., Lamma, E.: Probabilistic logic-based process mining. In: CILC. CEUR Workshop Proceedings, vol. 598. CEUR-WS.org (2010)
Bellodi, E., Riguzzi, F., Lamma, E.: Statistical relational learning for workflow mining. Intell. Data Anal. 20(3), 515–541 (2016)
Bergami, G., Di Francescomarino, C., Ghidini, C., Maggi, F.M., Puura, J.: Exploring business process deviance with sequential and declarative patterns. CoRR abs/2111.12454 (2021)
Bose, R.P.J.C., van der Aalst, W.M.P.: Discovering signature patterns from event logs. In: CIDM, pp. 111–118. IEEE (2013)
Brewka, G., Delgrande, J.P., Romero, J., Schaub, T.: asprin: customizing answer set preferences without a headache. In: AAAI, pp. 1467–1474. AAAI Press (2015)
Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)
Camacho, A., McIlraith, S.A.: Learning interpretable models expressed in linear temporal logic. In: ICAPS, pp. 621–630. AAAI Press (2019)
Chesani, F., et al.: Optimising business process discovery using answer set programming. In: Proceedings of the 16th International Conference on Logic Programming and Non-monotonic Reasoning (LPNMR 2022) (2022 To appear)
Chesani, F., et al.: Process discovery on deviant traces and other stranger things. IEEE Trans. Knowl. Data Eng. (2021), under review
Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting inductive logic programming techniques for declarative process mining. Trans. Petri Nets Other Model. Concurr. 2, 278–295 (2009)
Debois, S., Slaats, T.: The analysis of a real life declarative process. In: IEEE Symposium Series on Computational Intelligence, SSCI 2015, Cape Town, South Africa, 7–10 December 2015, pp. 1374–1382. IEEE (2015)
Di Ciccio, C., Maggi, F.M., Mendling, J.: Efficient discovery of target-branched declare constraints. Inf. Syst. 56, 258–283 (2016)
Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: Resolving inconsistencies and redundancies in declarative process models. Inf. Syst. 64, 425–446 (2017)
Gebser, M., Kaminski, R., Kauffman, B., Schaub, T.: Multi-shot asp solving with clingo. Theor. Pract. Logic Progr. 19(1), 27–82 (2019)
Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery with artificial negative events. J. Mach. Learn. Res. 10, 1305–1340 (2009)
Günther, C.W.: Process Mining in flexible environments. Ph.D. thesis, Technische Universiteit Eindhoven (2009)
Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplification based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75183-0_24
Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Inducing declarative logic-based models from labeled traces. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 344–359. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75183-0_25
Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying inductive logic programming to process mining. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 132–146. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78469-2_16
de León, H.P., Nardelli, L., Carmona, J., vanden Broucke, S.K.L.M.: Incorporating negative information to process discovery of complex systems. Inf. Sci. 422, 480–496 (2018)
Lo, D., Khoo, S., Liu, C.: Efficient mining of iterative patterns for software specification discovery. In: KDD, pp. 460–469. ACM (2007)
Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of understandable declarative process models from event logs. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31095-9_18
Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: A knowledge-based integrated approach for discovering and repairing declare maps. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 433–448. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38709-8_28
Maggi, F.M., Di Ciccio, C., Di Francescomarino, C., Kala, T.: Parallel algorithms for the automated discovery of declarative process models. Inf. Syst. 74(Part), 136–152 (2018)
Maruster, L., Weijters, A.J.M.M., van der Aalst, W.M.P., van den Bosch, A.: A rule-based approach for process discovery: dealing with noise and imbalance in process logs. Data Min. Knowl. Discov. 13(1), 67–87 (2006)
Neider, D., Gavran, I.: Learning linear temporal properties. In: FMCAD, pp. 1–10. IEEE (2018)
Nguyen, H., Dumas, M., La Rosa, M., Maggi, F.M., Suriadi, S.: Business process deviance mining: review and evaluation. CoRR abs/1608.08252 (2016)
Partington, A., Wynn, M.T., Suriadi, S., Ouyang, C., Karnon, J.: Process mining for clinical processes: a comparative analysis of four Australian hospitals. ACM Trans. Manag. Inf. Syst. 5(4), 19:1–19:18 (2015)
Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business processes management. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006). https://doi.org/10.1007/11837862_18
Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for loosely-structured processes. In: 11th IEEE International Enterprise Distributed Object Computing Conference (EDOC 2007), pp. 287–300. IEEE Computer Society (2007)
Riener, H.: Exact synthesis of LTL properties from traces. In: FDL, pp. 1–6. IEEE (2019)
Schunselaar, D.M.M., Maggi, F.M., Sidorova, N.: Patterns for a log-based strengthening of declarative compliance models. In: Derrick, J., Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 327–342. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30729-4_23
Slaats, T., Debois, S., Back, C.O.: Weighing the pros and cons: process discovery with negative examples. In: Polyvyanyy, A., Wynn, M.T., Looy, A.V., Reichert, M. (eds.) Business Process Management - 19th International Conference, BPM 2021, vol. 12875, pp. 47–64 (2021)
Suriadi, S., Mans, R.S., Wynn, M.T., Partington, A., Karnon, J.: Measuring patient flow variations: a cross-organisational process mining approach. In: Ouyang, C., Jung, J.-Y. (eds.) AP-BPM 2014. LNBIP, vol. 181, pp. 43–58. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08222-6_4
Suriadi, S., Wynn, M.T., Ouyang, C., ter Hofstede, A.H.M., van Dijk, N.J.: Understanding process behaviours in a large insurance company in Australia: a case study. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 449–464. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38709-8_29
Tessaris, S., Di Francescomarino, C., Chesani, F.: Negdis: code for the experiments (Aug 2021). https://doi.org/10.5281/zenodo.5158527
van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28108-2_19
Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering workflow models from event-based data using little thumb. Integr. Comput. Aided Eng. 10(2), 151–162 (2003)
Acknowledgments.
This work has been partially supported by the European Union’s H2020 projects HumaneAI-Net (g.a. 952026), StairwAI (g.a. 101017142), and TAILOR (g.a. 952215).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chesani, F. et al. (2022). Shape Your Process: Discovering Declarative Business Processes from Positive and Negative Traces Taking into Account User Preferences. In: Almeida, J.P.A., Karastoyanova, D., Guizzardi, G., Montali, M., Maggi, F.M., Fonseca, C.M. (eds) Enterprise Design, Operations, and Computing. EDOC 2022. Lecture Notes in Computer Science, vol 13585. Springer, Cham. https://doi.org/10.1007/978-3-031-17604-3_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-17604-3_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-17603-6
Online ISBN: 978-3-031-17604-3
eBook Packages: Computer ScienceComputer Science (R0)