Skip to main content

Monitoring and Understanding VOC Induced Glass Corrosion Using Multi-modal Imaging Techniques

  • Conference paper
  • First Online:
The Future of Heritage Science and Technologies (Florence Heri-Tech 2022)

Abstract

Historical transparent glass is a fragile and challenging material. Deterioration of historical glass objects kept in presence of volatile organic compounds (VOCs) mainly formaldehyde, formic acid and acetic acid, is a known phenomenon. Similar issues were encountered with glass objects in the collection centre of the Swiss National Museum, belonging to 17th–20th century CE. Until 1999, these objects were stored in chipwood mobile shelving units (a source of VOCs) in conditions with fluctuating relative humidity (RH) levels and temperature. To study this phenomenon, model glasses were produced and subjected to accelerated aging with variable relative humidity and in the presence of acetic acid and formic acid. The aged samples were documented using digital techniques such as digital photography, reflectance transformation imaging, optical microscopy, and hyperspectral Imaging (HSI) to assess changes in their appearance and to detect early signs of corrosion. The results from the application of multi-modal imaging techniques to visualize the surface of transparent colourless glass show promise for the documentation of VOC induced corrosion phenomena on glass surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alloteau, F., Majérus, O., Biron, I., Lehuédé, P., Caurant, D., Seyeux, A.: Temperature-dependent mechanisms of the atmospheric alteration of a mixed-alkali lime silicate glass. Corros. Sci. 159, 108129 (2019)

    Article  Google Scholar 

  2. Gentaz, L., Lombardo, T., Chabas, A., Loisel, C., Neff, D., Verney-Carron, A.: Role of secondary phases in the scaling of stained-glass windows exposed to rain. Corros. Sci. 109, 206–216 (2016)

    Article  Google Scholar 

  3. Hellmann, R., et al.: Nanometre-scale evidence for interfacial dissolution-reprecipitation control of silicate glass corrosion. Nat. Mater. 14(3), 307–311 (2015)

    Article  Google Scholar 

  4. Lenting, C., Plümper, O., Kilburn, M., Guagliardo, P., Klinkenberg, M., Geisler, T.: Towards a unifying mechanistic model for silicate glass corrosion. NPJ Mater. Degrad. 2(1) (2018)

    Google Scholar 

  5. Majérus, O., Lehuédé, P., Biron, I., Alloteau, F., Narayanasamy, S., Caurant, D.: Glass alteration in atmospheric conditions: crossing perspectives from cultural heritage, glass industry, and nuclear waste management. NPJ Mater. Degrad. 4(1), 1–16 (2020)

    Article  Google Scholar 

  6. Greiner-Wronowa, E.: Influence of organic pollutants on deterioration of antique glass structure. Acta Physica Polonia A 120(4) (2011)

    Google Scholar 

  7. Robinet, L., Eremin, K., Coupry, C., Hall, C., Lacome, N.: Effect of organic acid vapors on the alteration of soda silicate glass. J. Non-Cryst. Solids 353(16–17), 1546–1559 (2007)

    Google Scholar 

  8. Robinet, L., Fearn, S., Eremin, K.: Understanding glass deterioration in museum collections: a multi-disciplinary approach. In: 14th Triennial Meeting the Hague Preprints, pp. 139–145 (2005)

    Google Scholar 

  9. Robinet, L., Hall, C., Eremin, K., Fearn, S., Tate, J.: Alteration of soda silicate glasses by organic pollutants in museums: mechanisms and kinetics. J. Non-Cryst. Solids 355(28–30), 1479–1488 (2009)

    Google Scholar 

  10. Verhaar, G., van Bommel, M.R., Tennent, N.H.: Weeping Glass: The Identification of Ionic Species on the Surface of Vessel Glass Using Ion Chromatography (2016)

    Google Scholar 

  11. Verhaar, G.: Glass sickness: detection and prevention: investigating unstable glass inmuseum collections (2018)

    Google Scholar 

  12. Rodrigues, A., Fearn, S., Palomar, T., Vilarigues, M.: Early stages of surface alteration of soda-rich-silicate glasses in the museum environment. Corros. Sci. 143, 362–375 (2018)

    Article  Google Scholar 

  13. Schwarz, A.: “Kranke” Gläser : Formaldehydemission und Glaskorrosion : Untersuchungen am Beispiel der Glassammlung des Schweizerischen Landesmuseums. Zeitschrift Für Schweizerische Archäologie Und Kunstgeschichte 59, 371–384 (2002)

    Google Scholar 

  14. Odylha, M., Bergsten, C.J., Thickett, D.: Volatile organic compounds (VOCs) released by wood. In Basic Environmental Mechanisms Affecting Cultural Heritage. Understanding Deterioration Mechanisms for Conservation Purposes. In: COST Action D, vol. 42, pp. 107–133 (2010)

    Google Scholar 

  15. Schieweck, A., Delius, W., Siwinski, N., Vogtenrath, W., Genning, C., Salthammer, T.: Occurrence of organic and inorganic biocides in the museum environment. Atmos. Environ. 41(15), 3266–3275 (2007)

    Article  Google Scholar 

  16. Illguth, M., Schuler, C., Bucak, Ö.: The effect of optical anisotropies on building glass façades and its measurement methods. Front. Archit. Res. 4(2), 119–126 (2015)

    Article  Google Scholar 

  17. Castro, Y., et al.: Calibration of spatial distribution of light sources in reflectance transformation imaging based on adaptive local density estimation. J. Electron. Imaging 29(04), 041004 (2020)

    Article  Google Scholar 

  18. Malzbender, T., Gelb, D., Wolters, H.: Polynomial texture maps. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 519–528 (2001)

    Google Scholar 

  19. Kitanovski, V., Hardeberg, J.Y.: Objective evaluation of relighting models on translucent materials from multispectral RTI images (2021)

    Google Scholar 

  20. Dittus, A.M.: Reflectance Transformation Imaging (RTI) Eine Methode zur Visualisierung struktureller Oberflächenmerkmale. Restauro 4, 24–31 (2015)

    Google Scholar 

  21. Mytum, H., Peterson, J.R.: The application of reflectance transformation imaging (RTI) in historical archaeology. Hist. Archaeol. 52(2), 489–503 (2018). https://doi.org/10.1007/s41636-018-0107-x

    Article  Google Scholar 

  22. Nurit, M., le Goic, G., Chatoux, H., Maniglier, S., Jochum, P., Mansouri, A.: RTI derived features maps and their application for the assessment of manufactured surfaces. Comput. Vis. Image Underst. (2021)

    Google Scholar 

  23. Schindelin, J., et al.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9(7), 676–682 (2012)

    Article  Google Scholar 

  24. George, S., et al.: A study of spectral imaging acquisition and processing for cultural heritage. In: Digital Techniques for Documenting and Preserving Cultural Heritage, pp. 141–158 (2018)

    Google Scholar 

  25. Palomar, T., Grazia, C., Cardos, I.P., Vilarigues, M., Miliani, C., Romani, A.: Analysis of chromophores in stained-glass windows using visible hyperspectral imaging in-situ. Spectrochim Acta A Mol Biomol Spectrosc 223, 117378 (2019)

    Google Scholar 

  26. Cortelazzo, G.M., Poletto, L., Bertoncello, R.: New trends in imaging spectroscopy: the non-invasive study of the Scrovegni Chapel stained glass windows. In: Proceedings SPIE, vol. 8084 (2011)

    Google Scholar 

  27. Babini, A., George, S., Hardeberg, J.Y.: Hyperspectral imaging workflow for the acquisition and analysis of stained-glass panels (2021)

    Google Scholar 

  28. Davison, S.: Conservation and Restoration of Glass (2006)

    Google Scholar 

  29. Zaleski, S., et al.: Application of fiber optic reflectance spectroscopy for the detection of historical glass deterioration. J. Am. Ceram. Soc. 103(1), 158–166 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was carried out as part of the CHANGE (Cultural Heritage Analysis for New Generation) Innovative Training Network project funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 813789. The authors express their gratitude to the colleagues at Swiss National Museum, Affoltern am Albis, Switzerland, Norwegian University of Science and Technology, Gjovik, Norway and Université Bourgogne Franche-Comté, Dijon, France, for their help and support. In addition to this, we would like to express our gratitude towards Katrin Wittstadt of Fraunhofer Institute for Silicate Research (ISC), Bronnbach, Germany, for formulating the composition of the model glasses and towards traditional glass blower Alain Guillot, Le Bourg, Boisse, France, for manufacturing them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepshikha Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, D. et al. (2023). Monitoring and Understanding VOC Induced Glass Corrosion Using Multi-modal Imaging Techniques. In: Furferi, R., Governi, L., Volpe, Y., Gherardini, F., Seymour, K. (eds) The Future of Heritage Science and Technologies. Florence Heri-Tech 2022. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-17594-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17594-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17593-0

  • Online ISBN: 978-3-031-17594-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics