Skip to main content

Part of the book series: Lessons from the ICU ((LEICU))

  • 598 Accesses

Abstract

This chapter focuses on immune response as part of “host response to severe infection” describing the time evolution of immune phenotype from hyper-inflammation to immunodepression. These phenotypes allow to consider different phases with different genetic, transcriptomic, proteomic, and functional patterns. The chapter describes the multiple factor modifications and highlights the role of the shift in cell metabolism. This shift results mainly from glucose metabolism shift towards aerobic glycolysis after immune cell stimulation. The key role of HIF-1α and mTOR is depicted to increase the rate of glucose consumption in aerobic glycolysis, with an activation of intermediate pathways as the pentose phosphate pathway and pyruvate transformation. Elevated pyruvate production associated with abnormal function of the tricarboxylic acid and mitochondrial oxidative phosphorylation to produce ATP stimulates lactate production and lipid synthesis. The impact of the context (comorbidities, chronic treatments, genetic predisposition) may largely influence the tolerance of the described phenotypic changes. The integrated view then helps to propose new therapeutic axes based on metabolic pathway modifications, as metformin or HIF-1α inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bunik V. Experts’ opinion in translational medicine. Fr Med. 2021; Research Topic.

    Google Scholar 

  2. Abrams DI, Velasco G, Twelves C, Ganju RK, Bar-Sela G. Cancer treatment: preclinical & clinical. J Natl Cancer Inst Monogr. 2021;2021(58):107–13.

    PubMed  Google Scholar 

  3. Knoll R, Schultze JL, Schulte-Schrepping J. Monocytes and macrophages in COVID-19. Front Immunol. 2021;12:720109.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen ATC, Coura-Filho GB, Rehder MHH. Clinical characteristics of Covid-19 in China. N Engl J Med. 2020;382:1708–20.

    PubMed  Google Scholar 

  5. Cheng SC, Quintin J, Cramer RA, et al. mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 2014;345(6204):1250684.

    PubMed  PubMed Central  Google Scholar 

  6. Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017;39(5):517–28.

    CAS  PubMed  Google Scholar 

  7. Lukaszewicz AC, Grienay M, Resche-Rigon M, et al. Monocytic HLA-DR expression in intensive care patients: interest for prognosis and secondary infection prediction. Crit Care Med. 2009;37(10):2746–52.

    CAS  PubMed  Google Scholar 

  8. Monneret G, Venet F, Meisel C, Schefold JC. Assessment of monocytic HLA-DR expression in ICU patients: analytical issues for multicentric flow cytometry studies. Crit Care. 2010;14(4):432.

    PubMed  PubMed Central  Google Scholar 

  9. Liu Z, Mahale P, Engels EA. Sepsis and risk of cancer among elderly adults in the United States. Clin Infect Dis. 2019;68(5):717–24.

    CAS  PubMed  Google Scholar 

  10. Arts RJ, Gresnigt MS, Joosten LA, Netea MG. Cellular metabolism of myeloid cells in sepsis. J Leukoc Biol. 2017;101(1):151–64.

    CAS  PubMed  Google Scholar 

  11. Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013;13(3):260–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Rosier F, Brisebarre A, Dupuis C, et al. Genetic predisposition to the mortality in septic shock patients: from GWAS to the identification of a regulatory variant modulating the activity of a CISH enhancer. Int J Mol Sci. 2021;22(11):5852.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Matzinger P. The danger model: a renewed sense of self. Science. 2002;296(5566):301–5.

    CAS  PubMed  Google Scholar 

  14. van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol. 2017;17(7):407–20.

    PubMed  Google Scholar 

  15. Levi M, van der Poll T. Coagulation and sepsis. Thromb Res. 2017;149:38–44.

    CAS  PubMed  Google Scholar 

  16. Yipp BG, Kubes P. NETosis: how vital is it? Blood. 2013;122(16):2784–94.

    CAS  PubMed  Google Scholar 

  17. Boomer JS, To K, Chang KC, et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 2011;306(23):2594–605.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nalos M, Santner-Nanan B, Parnell G, Tang B, McLean AS, Nanan R. Immune effects of interferon gamma in persistent staphylococcal sepsis. Am J Respir Crit Care Med. 2012;185(1):110–2.

    PubMed  Google Scholar 

  19. Delsing CE, Gresnigt MS, Leentjens J, et al. Interferon-gamma as adjunctive immunotherapy for invasive fungal infections: a case series. BMC Infect Dis. 2014;14:166.

    PubMed  PubMed Central  Google Scholar 

  20. Payen D, Faivre V, Miatello J, et al. Multicentric experience with interferon gamma therapy in sepsis induced immunosuppression. A case series. BMC Infect Dis. 2019;19(1):931.

    PubMed  PubMed Central  Google Scholar 

  21. Shalova IN, Lim JY, Chittezhath M, et al. Human monocytes undergo functional re-programming during sepsis mediated by hypoxia-inducible factor-1alpha. Immunity. 2015;42(3):484–98.

    CAS  PubMed  Google Scholar 

  22. Herwanto V, Tang B, Wang Y, et al. Blood transcriptome analysis of patients with uncomplicated bacterial infection and sepsis. BMC Res Notes. 2021;14(1):76.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Venet F, Demaret J, Gossez M, Monneret G. Myeloid cells in sepsis-acquired immunodeficiency. Ann N Y Acad Sci. 2021;1499(1):3–17.

    PubMed  Google Scholar 

  24. Tawfik VL, Huck NA, Baca QJ, et al. Systematic immunophenotyping reveals sex-specific responses after painful injury in mice. Front Immunol. 2020;11:1652.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Payen D, Lukaszewicz AC, Belikova I, et al. Gene profiling in human blood leucocytes during recovery from septic shock. Intensive Care Med. 2008;34(8):1371–6.

    CAS  PubMed  Google Scholar 

  26. Belikova I, Lukaszewicz AC, Faivre V, Damoisel C, Singer M, Payen D. Oxygen consumption of human peripheral blood mononuclear cells in severe human sepsis. Crit Care Med. 2007;35(12):2702–8.

    CAS  PubMed  Google Scholar 

  27. Khor CC, Hibberd ML. Shared pathways to infectious disease susceptibility? Genome Med. 2010;2(8):52.

    PubMed  PubMed Central  Google Scholar 

  28. Fairfax BP, Knight JC. Genetics of gene expression in immunity to infection. Curr Opin Immunol. 2014;30:63–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Biswas SK, Lopez-Collazo E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol. 2009;30(10):475–87.

    CAS  PubMed  Google Scholar 

  30. Docke WD, Randow F, Syrbe U, et al. Monocyte deactivation in septic patients: restoration by IFN-gamma treatment. Nat Med. 1997;3(6):678–81.

    CAS  PubMed  Google Scholar 

  31. Wong HR, Wheeler DS, Tegtmeyer K, et al. Toward a clinically feasible gene expression-based subclassification strategy for septic shock: proof of concept. Crit Care Med. 2010;38(10):1955–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Roquilly A, Jacqueline C, Davieau M, et al. Alveolar macrophages are epigenetically altered after inflammation, leading to long-term lung immunoparalysis. Nat Immunol. 2020;21(6):636–48.

    CAS  PubMed  Google Scholar 

  33. Payen D, Cravat M, Maadadi H, et al. A longitudinal study of immune cells in severe COVID-19 patients. Front Immunol. 2020;11:580250.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rimmele T, Payen D, Cantaluppi V, et al. Immune cell phenotype and function in sepsis. Shock. 2016;45(3):282–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Venet F, Filipe-Santos O, Lepape A, et al. Decreased T-cell repertoire diversity in sepsis: a preliminary study. Crit Care Med. 2013;41(1):111–9.

    CAS  PubMed  Google Scholar 

  36. Monneret G, Venet F. A rapidly progressing lymphocyte exhaustion after severe sepsis. Crit Care. 2012;16(4):140.

    PubMed  PubMed Central  Google Scholar 

  37. Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13(12):862–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zheng HY, Zhang M, Yang CX, et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020;17:541–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Venet F, Foray AP, Villars-Mechin A, et al. IL-7 restores lymphocyte functions in septic patients. J Immunol. 2012;189(10):5073–81.

    CAS  PubMed  Google Scholar 

  40. Patera AC, Drewry AM, Chang K, Beiter ER, Osborne D, Hotchkiss RS. Frontline science: defects in immune function in patients with sepsis are associated with PD-1 or PD-L1 expression and can be restored by antibodies targeting PD-1 or PD-L1. J Leukoc Biol. 2016;100(6):1239–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Shindo Y, McDonough JS, Chang KC, Ramachandra M, Sasikumar PG, Hotchkiss RS. Anti-PD-L1 peptide improves survival in sepsis. J Surg Res. 2017;208:33–9.

    CAS  PubMed  Google Scholar 

  42. Hotchkiss R, Olston E, Yende S, et al. Immune checkpoint inhibition in sepsis: a phase 1b randomized, placebo-controlled, single ascending dose study of antiprogrammed cell death-ligand 1 antibody (BMS-936559). Crit Care Med. 2019;47(5):632–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Venet F, Pachot A, Debard AL, et al. Human CD4+CD25+ regulatory T lymphocytes inhibit lipopolysaccharide-induced monocyte survival through a Fas/Fas ligand-dependent mechanism. J Immunol. 2006;177(9):6540–7.

    CAS  PubMed  Google Scholar 

  44. Scumpia PO, Delano MJ, Kelly-Scumpia KM, et al. Treatment with GITR agonistic antibody corrects adaptive immune dysfunction in sepsis. Blood. 2007;110(10):3673–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ferrara JL. Cytokine dysregulation as a mechanism of graft versus host disease. Curr Opin Immunol. 1993;5(5):794–9.

    CAS  PubMed  Google Scholar 

  46. Bosmann M, Ward PA. The inflammatory response in sepsis. Trends Immunol. 2013;34(3):129–36.

    CAS  PubMed  Google Scholar 

  47. Coomes EA, Haghbayan H. Interleukin-6 in Covid-19: a systematic review and meta-analysis. Rev Med Virol. 2020;30(6):1–9.

    CAS  PubMed  Google Scholar 

  48. Maraolo AE, Crispo A, Piezzo M, et al. The use of tocilizumab in patients with COVID-19: a systematic review, meta-analysis and trial sequential analysis of randomized controlled studies. J Clin Med. 2021;10(21):4935.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2021;397(10285):1637–45.

    Google Scholar 

  50. Gupta S, Leaf DE. Tocilizumab in COVID-19: some clarity amid controversy. Lancet. 2021;397(10285):1599–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Opal SM, DePalo VA. Anti-inflammatory cytokines. Chest. 2000;117(4):1162–72.

    CAS  PubMed  Google Scholar 

  52. Fanucchi S, Dominguez-Andres J, Joosten LAB, Netea MG, Mhlanga MM. The intersection of epigenetics and metabolism in trained immunity. Immunity. 2021;54(1):32–43.

    CAS  PubMed  Google Scholar 

  53. Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex—linking immunity and metabolism. Nat Rev Endocrinol 2012;8(12):743–754.

    Google Scholar 

  54. Tracey KJ. The inflammatory reflex. Nature. 2002;420(6917):853–9.

    CAS  PubMed  Google Scholar 

  55. O’Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol. 2016;16(9):553–65.

    PubMed  PubMed Central  Google Scholar 

  56. O’Neill LA, Pearce EJ. Immunometabolism governs dendritic cell and macrophage function. J Exp Med. 2016;213(1):15–23.

    PubMed  PubMed Central  Google Scholar 

  57. Loftus RM, Finlay DK. Immunometabolism: cellular metabolism turns immune regulator. J Biol Chem. 2016;291(1):1–10.

    CAS  PubMed  Google Scholar 

  58. Mickiewicz B, Vogel HJ, Wong HR, Winston BW. Metabolomics as a novel approach for early diagnosis of pediatric septic shock and its mortality. Am J Respir Crit Care Med. 2013;187(9):967–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Dominguez-Andres J, Netea MG. Long-term reprogramming of the innate immune system. J Leukoc Biol. 2019;105(2):329–38.

    CAS  PubMed  Google Scholar 

  60. Nalos M, Parnell G, Robergs R, Booth D, McLean AS, Tang BM. Transcriptional reprogramming of metabolic pathways in critically ill patients. Intensive Care Med Exp. 2016;4(1):21.

    PubMed  PubMed Central  Google Scholar 

  61. Vitko NP, Spahich NA, Richardson AR. Glycolytic dependency of high-level nitric oxide resistance and virulence in Staphylococcus aureus. mBio. 2015;6(2):e00045–15.

    PubMed  PubMed Central  Google Scholar 

  62. Ripoli M, D’Aprile A, Quarato G, et al. Hepatitis C virus-linked mitochondrial dysfunction promotes hypoxia-inducible factor 1 alpha-mediated glycolytic adaptation. J Virol. 2010;84(1):647–60.

    CAS  PubMed  Google Scholar 

  63. Saha S, Shalova IN, Biswas SK. Metabolic regulation of macrophage phenotype and function. Immunol Rev. 2017;280(1):102–11.

    CAS  PubMed  Google Scholar 

  64. Nolt B, Tu F, Wang X, et al. Lactate and immunosuppression in sepsis. Shock. 2018;49(2):120–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Delano MJ, Ward PA. The immune system's role in sepsis progression, resolution, and long-term outcome. Immunol Rev. 2016;274(1):330–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Knight M, Stanley S. HIF-1alpha as a central mediator of cellular resistance to intracellular pathogens. Curr Opin Immunol. 2019;60:111–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Braverman J, Sogi KM, Benjamin D, Nomura DK, Stanley SA. HIF-1alpha is an essential mediator of IFN-gamma-dependent immunity to Mycobacterium tuberculosis. J Immunol. 2016;197(4):1287–97.

    CAS  PubMed  Google Scholar 

  68. Jones RG, Pearce EJ. MenTORing immunity: mTOR Signaling in the development and function of tissue-resident immune cells. Immunity. 2017;46(5):730–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Michalek RD, Gerriets VA, Jacobs SR, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol. 2011;186(6):3299–303.

    CAS  PubMed  Google Scholar 

  70. Netea MG, Giamarellos-Bourboulis EJ, Dominguez-Andres J, et al. Trained immunity: a tool for reducing susceptibility to and the severity of SARS-CoV-2 infection. Cell. 2020;181(5):969–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Netea MG, Joosten LAB, van der Meer JWM. Hypothesis: stimulation of trained immunity as adjunctive immunotherapy in cancer. J Leukoc Biol. 2017;102(6):1323–32.

    CAS  PubMed  Google Scholar 

  72. Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30(2):214–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Cavalli G, Tengesdal IW, Gresnigt M, et al. The anti-inflammatory cytokine interleukin-37 is an inhibitor of trained immunity. Cell Rep. 2021;35(1):108955.

    CAS  PubMed  Google Scholar 

  74. Cheng SC, Scicluna BP, Arts RJ, et al. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat Immunol. 2016;17(4):406–13.

    CAS  PubMed  Google Scholar 

  75. Qiao Y, Giannopoulou EG, Chan CH, et al. Synergistic activation of inflammatory cytokine genes by interferon-gamma-induced chromatin remodeling and toll-like receptor signaling. Immunity. 2013;39(3):454–69.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Payen, D., Carles, M., Seitz-Polski, B. (2023). The Dysregulated Host Response. In: Molnar, Z., Ostermann, M., Shankar-Hari, M. (eds) Management of Dysregulated Immune Response in the Critically Ill. Lessons from the ICU. Springer, Cham. https://doi.org/10.1007/978-3-031-17572-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17572-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17571-8

  • Online ISBN: 978-3-031-17572-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics