Skip to main content

Encoder-Decoder Architectures for Clinically Relevant Coronary Artery Segmentation

  • Conference paper
  • First Online:
Computational Advances in Bio and Medical Sciences (ICCABS 2021)

Abstract

Coronary X-ray angiography is a crucial clinical procedure for the diagnosis and treatment of coronary artery disease, which accounts for roughly 16% of global deaths every year. However, the images acquired in these procedures have low resolution and poor contrast, making lesion detection and assessment challenging. Accurate coronary artery segmentation not only helps mitigate these problems, but also allows the extraction of relevant anatomical features for further analysis by quantitative methods. Although automated segmentation of coronary arteries has been proposed before, previous approaches have used non-optimal segmentation criteria, leading to less useful results. Most methods either segment only the major vessel, discarding important information from the remaining ones, or segment the whole coronary tree, based mostly on contrast information, producing a noisy output that includes vessels that are not relevant for diagnosis. We adopt a better-suited clinical criterion and segment vessels according to their clinical relevance. Additionally, we simultaneously perform catheter segmentation, which may be useful for diagnosis due to the scale factor provided by the catheter’s known diameter, and is a task that has not yet been performed with good results. To derive the optimal approach, we conducted an extensive comparative study of encoder-decoder architectures trained on a combination of focal loss and a variant of generalized dice loss. Based on the EfficientNet and the UNet++ architectures, we propose a line of efficient and high-performance segmentation models using a new decoder architecture, the EfficientUNet++, whose best-performing version achieves a generalized dice score of 0.9202 ± 0.0356, and artery and catheter class dice scores of 0.8858 ± 0.0461 and 0.7627 ± 0.1812.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caron, M., et al.: Emerging properties in self-supervised vision transformers. arXiv preprint arXiv:2104.14294 (2021)

  2. Chaurasia, A., Culurciello, E.: Linknet: exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP), pp. 1–4. IEEE (2017)

    Google Scholar 

  3. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European conference on computer vision (ECCV), pp. 801–818 (2018)

    Google Scholar 

  4. Crum, W.R., Camara, O., Hill, D.L.: Generalized overlap measures for evaluation and validation in medical image analysis. IEEE Trans. Med. Imaging 25(11), 1451–1461 (2006)

    Article  Google Scholar 

  5. Dai, Z., Liu, H., Le, Q.V., Tan, M.: Coatnet: marrying convolution and attention for all data sizes. arXiv preprint arXiv:2106.04803 (2021)

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  7. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  8. Fan, J., et al.: Multichannel fully convolutional network for coronary artery segmentation in x-ray angiograms. IEEE Access 6, 44635–44643 (2018)

    Article  Google Scholar 

  9. Fort, S., Brock, A., Pascanu, R., De, S., Smith, S.L.: Drawing multiple augmentation samples per image during training efficiently decreases test error. arXiv preprint arXiv:2105.13343 (2021)

  10. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference Proceedings (2010)

    Google Scholar 

  11. Graham, B., et al.: Levit: a vision transformer in convnet’s clothing for faster inference. arXiv preprint arXiv:2104.01136 (2021)

  12. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. van der Heijden, L.C., et al.: Small-vessel treatment with contemporary newer-generation drug-eluting coronary stents in all-comers: insights from 2-year dutch peers (twente ii) randomized trial. Am. Heart J. 176, 28–35 (2016)

    Article  Google Scholar 

  15. Howard, A., et al.: Searching for mobilenetv3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314–1324 (2019)

    Google Scholar 

  16. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  17. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  18. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  19. Iyer, K., et al.: Angionet: a convolutional neural network for vessel segmentation in x-ray angiography. medRxiv (2021)

    Google Scholar 

  20. Jha, D., et al.: Resunet++: an advanced architecture for medical image segmentation. In: 2019 IEEE International Symposium on Multimedia (ISM), pp. 225–2255. IEEE (2019)

    Google Scholar 

  21. Jun, T.J., Kweon, J., Kim, Y.H., Kim, D.: T-net: nested encoder-decoder architecture for the main vessel segmentation in coronary angiography. Neural Netw. 128, 216–233 (2020)

    Article  Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  23. Kirillov, A., He, K., Girshick, R., Dollár, P.: Iccv_stuff_fair_final. http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf. Accessed on 10 June 2021

  24. Kukačka, J., Golkov, V., Cremers, D.: Regularization for deep learning: a taxonomy. arXiv preprint arXiv:1710.10686 (2017)

  25. Li, H., Xiong, P., An, J., Wang, L.: Pyramid attention network for semantic segmentation. arXiv preprint arXiv:1805.10180 (2018)

  26. Li, R., Zheng, S., Duan, C., Zhang, C., Su, J., Atkinson, P.: Multi-attention-network for semantic segmentation of fine resolution remote sensing images. arXiv preprint arXiv:2009.02130 (2020)

  27. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  28. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  29. Misra, D., Nalamada, T., Arasanipalai, A.U., Hou, Q.: Rotate to attend: convolutional triplet attention module. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3139–3148 (2021)

    Google Scholar 

  30. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  31. Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollár, P.: Designing network design spaces. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10428–10436 (2020)

    Google Scholar 

  32. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  33. Roy, A.G., Navab, N., Wachinger, C.: Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 421–429. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_48

    Chapter  Google Scholar 

  34. Rudd, K.E., et al.: Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the global burden of disease study. Lancet 395(10219), 200–211 (2020)

    Article  Google Scholar 

  35. Samuel, P.M., Veeramalai, T.: VSSC net: vessel specific skip chain convolutional network for blood vessel segmentation. Comput. Methods Programs Biomed. 198, 105769 (2021)

    Google Scholar 

  36. Sim, H.W., et al.: Treatment of very small de novo coronary artery disease with 2.0 mm drug-coated balloons showed 1-year clinical outcome comparable with 2.0 mm drug-eluting stents. J. Invasive Cardiol. 30(7), 256–261 (2018)

    Google Scholar 

  37. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  38. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  39. Vlontzos, A., Mikolajczyk, K.: Deep segmentation and registration in x-ray angiography video. arXiv preprint arXiv:1805.06406 (2018)

  40. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: Cbam: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  41. Wu, H., et al.: CVT: introducing convolutions to vision transformers. arXiv preprint arXiv:2103.15808 (2021)

  42. Xian, Z., Wang, X., Yan, S., Yang, D., Chen, J., Peng, C.: Main coronary vessel segmentation using deep learning in smart medical. Math. Prob. Eng. 2020 (2020)

    Google Scholar 

  43. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  44. Yakubovskiy, P.: Segmentation models pytorch. https://github.com/qubvel/segmentation_models.pytorch (2020)

  45. Yang, S., Kweon, J., Kim, Y.H.: Major vessel segmentation on x-ray coronary angiography using deep networks with a novel penalty loss function. In: International Conference on Medical Imaging with Deep Learning-Extended Abstract Track (2019)

    Google Scholar 

  46. Yang, S., et al.: Deep learning segmentation of major vessels in x-ray coronary angiography. Sci. Rep. 9(1), 1–11 (2019)

    Google Scholar 

  47. Yuan, K., Guo, S., Liu, Z., Zhou, A., Yu, F., Wu, W.: Incorporating convolution designs into visual transformers. arXiv preprint arXiv:2103.11816 (2021)

  48. Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. 15(5), 749–753 (2018)

    Article  Google Scholar 

  49. Zhao, C., et al.: Semantic segmentation to extract coronary arteries in fluoroscopy angiograms. medRxiv (2020)

    Google Scholar 

  50. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  51. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  52. Zhu, X., Cheng, Z., Wang, S., Chen, X., Lu, G.: Coronary angiography image segmentation based on PSPnet. Comput. Methods Programs Biomed. 200, 105897 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported by national funds through Fundação para a Ciência e Tecnologia (FCT), under the project with reference UIDB/50021/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Lourenço-Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lourenço-Silva, J., Menezes, M.N., Rodrigues, T., Silva, B., Pinto, F.J., Oliveira, A.L. (2022). Encoder-Decoder Architectures for Clinically Relevant Coronary Artery Segmentation. In: Bansal, M.S., et al. Computational Advances in Bio and Medical Sciences. ICCABS 2021. Lecture Notes in Computer Science(), vol 13254. Springer, Cham. https://doi.org/10.1007/978-3-031-17531-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17531-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17530-5

  • Online ISBN: 978-3-031-17531-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics