Skip to main content

High-Speed Optical Extensometer for Uniaxial Kolsky Bar Experiments

  • Conference paper
  • First Online:
Advancements in Optical Methods, Digital Image Correlation & Micro-and Nanomechanics, Volume 4 (SEM 2022)

Abstract

This work studies the implementation of a high-speed linescan camera as a 1D high-speed optical extensometer in gathering strain histories during dynamic strain rate experiments. Aluminum 6061-T6 is tested in tension and compression and recorded using both the high-speed extensometer and a high-speed camera, and the resulting images are analyzed for sample strain and compared to strains found via 1D wave theory calculations. The results show good alignment between the two optical methods with the strain gathered from the wave calculations showing slightly higher strains in both tension and compression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rubino, V., Rosakis, A.J., Lapusta, N.: Full-field ultrahigh-speed quantification of dynamic shear ruptures using digital image correlation. Exp. Mech. 59(5), 551–582 (2019). https://doi.org/10.1007/s11340-019-00501-7

    Article  Google Scholar 

  2. Hijazi, A., Madhavan, V.: A novel ultra-high speed camera for digital image processing applications. Meas. Sci. Technol. 19(8), 085503 (2008). https://doi.org/10.1088/0957-0233/19/8/085503

    Article  CAS  Google Scholar 

  3. Haiting, S., Zhaoxiu, J., Beike, W., Chenghua, L., Lili, W., Yonggang, W.: Full field strain measurement in split Hopkinson tension bar experiments by using ultra-high-speed camera with digital image correlation. bzycj. 37(1), 15–20 (2017). https://doi.org/10.11883/1001-1455(2017)01-0015-06

    Article  Google Scholar 

  4. Gilat, A., Schmidt, T.E., Walker, A.L.: Full field strain measurement in compression and tensile Split Hopkinson Bar experiments. Exp. Mech. 49(2), 291–302 (2009). https://doi.org/10.1007/s11340-008-9157-x

    Article  Google Scholar 

  5. Ravichandran, G., Subhash, G.: Critical appraisal of limiting strain rates for compression testing of ceramics in a Split Hopkinson pressure Bar. J. Am. Ceram. Soc. 77(1), 263–267 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb06987.x

    Article  CAS  Google Scholar 

  6. Chen, W.W., Song, B.: Kolsky compression Bar experiments on brittle materials. In: Chen, W., Song, B. (eds.) Split Hopkinson (Kolsky) Bar: Design, testing and applications, pp. 77–118. Springer, Boston, MA (2011). https://doi.org/10.1007/978-1-4419-7982-7_3

    Chapter  Google Scholar 

  7. Foster, J.T.: Comments on the validity of test conditions for Kolsky Bar testing of elastic-brittle materials. Exp. Mech. 52(9), 1559–1563 (2012). https://doi.org/10.1007/s11340-012-9592-6

    Article  Google Scholar 

  8. Qiu, Y., Loeffler, C.M., Nie, X., Song, B.: Improved experimental and diagnostic techniques for dynamic tensile stress–strain measurement with a Kolsky tension bar. Meas. Sci. Technol. 29(7), 075201 (2018). https://doi.org/10.1088/1361-6501/aabc9f

    Article  CAS  Google Scholar 

  9. Li, Y., Ramesh, K.T.: An optical technique for measurement of material properties in the tension Kolsky bar. Int. J. Imp. Eng. 34(4), 784–798 (2007). https://doi.org/10.1016/j.ijimpeng.2005.12.002

    Article  Google Scholar 

  10. Yu, S.-N., Jang, J.-H., Han, C.-S.: Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel. Autom. Constr. 16(3), 255–261 (2007). https://doi.org/10.1016/j.autcon.2006.05.003

    Article  Google Scholar 

  11. Gong, Q., Zhu, L., Wang, Y., Yu, Z.: Automatic subway tunnel crack detection system based on line scan camera. Struct. Control. Health Monit. 28(8), e2776 (2021). https://doi.org/10.1002/stc.2776

    Article  Google Scholar 

  12. Lemstrom, G.F.: True RGB linescan camera for color machine vision applications, pp. 494–502. Boston, MA (1994). https://doi.org/10.1117/12.188921

    Book  Google Scholar 

  13. De Grauw, C.J., Otto, C., Greve, J.: Linescan Raman microspectrometry for biological applications. Appl. Spectrosc. 51(11), 1607–1612 (1997). https://doi.org/10.1366/0003702971939587

    Article  Google Scholar 

  14. Li, Y.-S., Young, T.Y., Magerl, J.A.: Subpixel edge detection and estimation with a microprocessor-controlled line scan camera. IEEE Trans. Ind. Electron. 35(1), 105–112 (1988). https://doi.org/10.1109/41.3072

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Leonard III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leonard, R., Whittington, W. (2023). High-Speed Optical Extensometer for Uniaxial Kolsky Bar Experiments. In: Lin, MT., Furlong, C., Hwang, CH., Naraghi, M., DelRio, F. (eds) Advancements in Optical Methods, Digital Image Correlation & Micro-and Nanomechanics, Volume 4. SEM 2022. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-031-17471-1_6

Download citation

Publish with us

Policies and ethics