Skip to main content

Low Density ALS Data to Support Forest Management Plans: The Alta Val Di Susa Forestry Consortium (NW Italy) Case Study

  • Conference paper
  • First Online:
Geomatics for Green and Digital Transition (ASITA 2022)

Abstract

LiDAR systems are evolving very rapidly. In recent years, in fact, the forest sector is largely taking advantage of such evolving progress. Aerial LiDAR (ALS) capability of collecting large amounts of data can directly influence the cost of ordinary in-field forest measurements. A great availability of freely accessible LiDAR data archives from public institutions, often obtained for different purposes than the forestry one, can, however, enormously contribute to forests management. The present study, based on pre-processed and freely available LiDAR-derived DTM and DSM from the Piemonte Region (NW Italy), is a further demonstration that forest planning can be valuable supported by this type of data, that proved to be able to support Forest Settlement Plans redaction. In this study, an estimate (and mapping) of the main forest structural parameters over a test area was achieved with an accuracy consistent with the one ordinarily required by planners when reviewing/setting up a new forest management plan. Moreover, this work proved that free official open data coupled with the current availability of free advanced software for data processing can make this technology easily transferrable to professionals and territory managers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armston, J.D., Denham, R.J., Danaher, T.J., Scarth, P.F., Moffiet, T.N.: Prediction and validation of foliage projective cover from Landsat-5 TM and Landsat-7 ETM+ imagery. J. Appl. Remote Sens. 3(1), 033540 (2009). https://doi.org/10.1117/1.3216031

    Article  Google Scholar 

  2. Bolton, D.K., White, J.C., Wulder, M.A., Coops, N.C., Hermosilla, T., Yuan, X.: Updating stand-level forest inventories using airborne laser scanning and Landsat time series data. Int. J. Appl. Earth Observ. Geoinf. 66, 174–183 (2018). https://doi.org/10.1016/j.jag.2017.11.016

    Article  Google Scholar 

  3. Borgogno Mondino, E., Fissore, V., Lessio, A., Motta, R.: Are the new gridded DSM/DTMs of the Piemonte Region (Italy) proper for forestry? A fast and simple approach for a posteriori metric assessment. iForest-Biogeosciences Forestry 9(6), 901–909 (2016). https://doi.org/10.3832/ifor1992-009

  4. Borgogno Mondino, E., Fissore, V., Falkowski, M.J., Palik, B.: How far can we trust forestry estimates from low-density LiDAR acquisitions? The Cutfoot Sioux experimental forest (MN, USA) case study. Int. J. Remote Sens. 41, 4549–4567 (2020). https://doi.org/10.1080/01431161.2020.1723173

    Article  Google Scholar 

  5. Brandtberg, T., Warner, T.A., Landenberger, R.E., McGraw, J.B.: Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America. Remote Sens. Environ. 85(30), 290–303 (2003). https://doi.org/10.1016/S0034-4257(03)00008-7

    Article  Google Scholar 

  6. Camerano, P., Gottero, F., Terzuolo, P.G., Varese, P.: IPLA S.p.a.–Tipi forestali del Piemonte – Metodologia e guida per l’identificazione. p. 216, Blu Edizioni, Torino (2008)

    Google Scholar 

  7. García, M., Saatchi, S., Ustin, S., Balzter, H.: Modelling forest canopy height by integrating airborne LiDAR samples with satellite Radar and multispectral imagery. Int. J. Appl. Earth Observ. Geoinf. 66, 159–173 (2018). https://doi.org/10.1016/j.jag.2017.11.017

  8. Hebel, M., Stilla, U.: Simultaneous calibration of ALS systems and alignment of multiview LiDAR scans of urban areas. IEEE Trans. Geosci. Remote Sens. 50(6), 2364–2379 (2012). https://doi.org/10.1109/TGRS.2011.2171974

  9. Hill, R.A., Thomson, A.G.: Mapping woodland species composition and structure using airborne spectral and LiDAR data. Int. J. Remote Sens. 26(17), 3763–3779 (2011). https://doi.org/10.1080/01431160500114706

    Article  Google Scholar 

  10. Huising, E.J., Pereira, L.M.G.: Errors and accuracy estimates of laser data acquired by various laser scanning systems for topographic applications. ISPRS J. Photogramm. Remote. Sens. 53(5), 245–261 (1998). https://doi.org/10.1016/S0924-2716(98)00013-6

    Article  Google Scholar 

  11. James, J.A., Watson, D.G., Hansen, W.F.: Using LiDAR data to map gullies and headwater streams under forest canopy: South Carolina, USA. CATENA 71(1), 132–144 (2007). https://doi.org/10.1016/j.catena.2006.10.010

    Article  Google Scholar 

  12. Kayitakire, F., Hamel, C., Defourny, P.: Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery. Remote Sens. Environ. 102(3–4), 390–401 (2006). https://doi.org/10.1016/j.rse.2006.02.022

    Article  Google Scholar 

  13. Ke, Y., Quackenbush, L.J., Im, J.H.: Synergistic use of QuickBird multispectral imagery and LIDAR data for object-based forest species classification. Remote Sens. Environ. 114(6), 1141–1154 (2010). https://doi.org/10.1016/j.rse.2010.01.002

    Article  Google Scholar 

  14. Kershaw, J.A., Ducey, M.J., Beers, T.W., Husch, B.: Forest Mensuration, 5th edn. Wiley Blackwell, Hoboken (2007)

    Google Scholar 

  15. Lefsky, M.A., Cohen, W.B., Parker, G.G., Harding, D.J.: Lidar Remote Sensing for Ecosystem Studies: Lidar, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists. Bioscience 52(1), 19–30 (2002). https://doi.org/10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2

    Article  Google Scholar 

  16. Mallet, C., Bretar, F.: Full-waveform topographic lidar: state-of-the-art. ISPRS J. Photogramm. Remote. Sens. 64(1), 1–16 (2009). https://doi.org/10.1016/j.isprsjprs.2008.09.007

    Article  Google Scholar 

  17. Maltamo, M., Mustonen, K., Hyyppä, J., Pitkänen, J., Yu, X.: The accuracy of estimating individual tree variables with airborne laser scanning in a boreal nature reserve. Can. J. For. Res. 34(9), 1791–1801 (2004). https://doi.org/10.1139/x04-05

    Article  Google Scholar 

  18. Montaghi, A., Corona, P., Dalponte, M., Gianelle, D., Chirici, G., Olsson, H.: Airborne laser scanning of forest resources: an overview of research in Italy as a commentary case study. Int. J. Appl. Earth Obs. Geoinf. 23, 288–300 (2013). https://doi.org/10.1016/j.jag.2012.10.002

    Article  Google Scholar 

  19. Mura, M., et al.: Exploiting the capabilities of the Sentinel-2 multi spectral instrument for predicting growing stock volume in forest ecosystems. Int. J. Appl. Earth Observ. Geoinf. 66, 126–134 (2018). https://doi.org/10.1016/j.jag.2017.11.013

  20. Næsset, E.: Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens. Environ. 61(2), 246–253 (1997). https://doi.org/10.1016/S0034-4257(97)00041-2

    Article  Google Scholar 

  21. Næsset, E., et al.: Mapping and estimating forest area and aboveground biomass in miombo woodlands in Tanzania using data from airborne laser scanning, TanDEM-X, RapidEye, and global forest maps: a comparison of estimated precision. Remote Sens. Environ. 175, 282–300 (2016). https://doi.org/10.1016/j.rse.2016.01.006

    Article  Google Scholar 

  22. Pacala, S.W., Canham, D.C., Saponara, J., Silander, J.A., Kobe, R.K., Ribbens, E.: Forest models defined by field measurements: estimation. Error Anal. Dyn. Ecol. Monographs 6(1), 1–43 (1996). https://doi.org/10.2307/2963479

    Article  Google Scholar 

  23. Regione Piemonte, Geoportale Regione Piemonte (Piedmont Region Geoportal). http://www.geoportale.piemonte.it/cms/servizi/servizi-di-scarico. Accessed 28 Feb 2022

  24. Stone, C., Mohammed, C.: Application of remote sensing technologies for assessing planted forests damaged by insect pests and fungal pathogens: a review. Curr. For. Rep. 3(2), 75–92 (2017). https://doi.org/10.1007/s40725-017-0056

    Article  Google Scholar 

  25. Swatantran, A., Tang, H., Barrett, T., DeCola, P., Dubayah, R.: Rapid, high-resolution forest structure and terrain mapping over large areas using single photon lidar. Sci. Rep. 6(1), 28277 (2016). https://doi.org/10.1038/srep28277

    Article  Google Scholar 

  26. Wagner, W., Hollaus, M., Briese, C., Ducic, V.: 3D vegetation mapping using small‐footprint full‐waveform airborne laser scanners. Int. J. Remote Sens. 29(5), 1433–1452 (2008). https://doi.org/10.1080/01431160701736398

  27. White, J.C., Wulder, M.A., Vastaranta, M., Coops, N.C., Pitt, D., Woods, M.: The utility of image-based point clouds for forest inventory: a comparison with airborne laser scanning. Forests 4(3), 518–536 (2013). https://doi.org/10.3390/f4030518

    Article  Google Scholar 

  28. Wulder, M.A., Bater, C.W., Coops, N.C., Hilker, T., White, J.C.: The role of LiDAR in sustainable forest management. For. Chron. 84(6), 807–826 (2008). https://doi.org/10.5558/tfc84807-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ilardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ilardi, E., Fissore, V., Berretti, R., Dotta, A., Boccardo, P., Borgogno-Mondino, E. (2022). Low Density ALS Data to Support Forest Management Plans: The Alta Val Di Susa Forestry Consortium (NW Italy) Case Study. In: Borgogno-Mondino, E., Zamperlin, P. (eds) Geomatics for Green and Digital Transition. ASITA 2022. Communications in Computer and Information Science, vol 1651. Springer, Cham. https://doi.org/10.1007/978-3-031-17439-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17439-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17438-4

  • Online ISBN: 978-3-031-17439-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics