Skip to main content

ProgDTN: Programmable Disruption-Tolerant Networking

  • Conference paper
  • First Online:
Networked Systems (NETYS 2022)

Abstract

Existing routing algorithms for disruption-tolerant networking (DTN) have two main limitations: (a) a particular DTN routing algorithm is typically designed to achieve very good performance in a specific scenario, but has limited performance in other scenarios, and (b) DTN routing algorithms do not take advantage of network programmability to profit from its benefits. We present ProgDTN, a novel approach to support programmable disruption-tolerant networking by allowing network operators to implement and adapt routing algorithms without knowledge of a router’s interior workings using the popular JavaScript language. To consider the specific properties of a particular application scenario, network operators can incorporate context information of DTN bundles and nodes in their routing algorithms. ProgDTN is based on DTN7, a flexible and efficient open-source, platform-independent implementation of the Bundle Protocol version 7. Our experimental evaluation demonstrates that using ProgDTN to tailor a routing algorithm to a particular scenario achieves excellent results of up to 99.9% delivery ratio while reducing unnecessary transmissions by 92.9%. ProgDTN ’s implementation, our tailored scenario-specific routing algorithm, and code/data fragments for our experiments are released under permissive open-source licenses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/umr-ds/dtn7-go/tree/progdtn.

  2. 2.

    https://github.com/umr-ds/progdtn-evaluation.

  3. 3.

    https://dshare.mathematik.uni-marburg.de/index.php/s/8k6XZgKJp9kTMPS.

  4. 4.

    https://dtn7.github.io/.

  5. 5.

    https://insights.stackoverflow.com/survey/2021.

  6. 6.

    https://github.com/dop251/goja.

  7. 7.

    The description of the bundle data structure is omitted for brevity. We refer to https://github.com/dtn7/dtn7-go/blob/d3b5e62a7f89994ececf98978bae499f32cc920f/pkg/bpv7/bundle.go for further information.

  8. 8.

    https://coreemu.github.io.

References

  1. Ahrenholz, J.: Comparison of CORE network emulation platforms. In: MILCOM 2010 Military Communications Conference, pp. 166–171, October 2010. https://doi.org/10.1109/MILCOM.2010.5680218

  2. Baek, K.M., Seo, D.Y., Chung, Y.W.: An improved opportunistic routing protocol based on context information of mobile nodes. Appl. Sci. 8(8), 134 (2018). https://doi.org/10.3390/app8081344

  3. Bansal, A., Gupta, A., Sharma, D.K., Gambhir, V.: IICAR-inheritance inspired context aware routing protocol for opportunistic networks. J. Ambient. Intell. Humaniz. Comput. 10(6), 2235–2253 (2018). https://doi.org/10.1007/s12652-018-0815-2

    Article  Google Scholar 

  4. Biswas, P.K., Mackey, S.J., Cansever, D.H., Patel, M.P., Panettieri, F.B.: Context-aware SmallWorld routing for wireless ad-hoc networks. IEEE Trans. Commun. 66(9), 3943–3958 (2018). https://doi.org/10.1109/TCOMM.2018.2811486

    Article  Google Scholar 

  5. Boldrini, C., Conti, M., Jacopini, J., Passarella, A.: HiBOp: a history based routing protocol for opportunistic networks. In: 2007 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, pp. 1–12, June 2007. https://doi.org/10.1109/WOWMOM.2007.4351716

  6. Burleigh, S., Fall, K., Birrane, E.: Bundle Protocol Version 7. Internet draft, RFC Editor, March 2020. https://tools.ietf.org/html/draft-ietf-dtn-bpbis-24

  7. Cabaniss, R., Madria, S., Rush, G., Trotta, A., Vulli, S.S.: Dynamic social grouping based routing in a mobile ad-hoc network. In: 2010 International Conference on High Performance Computing, pp. 1–8, December 2010. https://doi.org/10.1109/HIPC.2010.5713165

  8. Demmer, M., Fall, K.: DTLSR: delay tolerant routing for developing regions. In: Proceedings of the 2007 Workshop on Networked Systems for Developing Regions, pp. 5:1–5:6. NSDR 2007, ACM, New York, NY, USA (2007). https://doi.org/10.1145/1326571.1326579

  9. Er-rouidi, M., Moudni, H., Faouzi, H., Mouncif, H., Merbouha, A.: A fuzzy-based routing strategy to improve route stability in MANET based on AODV. In: El Abbadi, A., Garbinato, B. (eds.) NETYS 2017. LNCS, vol. 10299, pp. 40–48. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59647-1_4

    Chapter  Google Scholar 

  10. Froemmgen, A., Stohr, D., Koldehofe, B., Rizk, A.: Don’t repeat yourself: seamless execution and analysis of extensive network experiments. In: Proceedings of the 14th International Conference on emerging Networking EXperiments and Technologies (CoNEXT 2018) (2018). https://doi.org/10.1145/3281411.3281420

  11. Johari, R., Gupta, N., Aneja, S.: CACBR: context aware community based routing for intermittently connected network. In: Proceedings of the 10th ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, Ubiquitous Networks, pp. 137–140. PE-WASUN 2013, ACM, New York, NY, USA (2013). https://doi.org/10.1145/2507248.2507272

  12. Lindgren, A., Doria, A., Schelén, O.: Probabilistic routing in intermittently connected networks. In: Dini, P., Lorenz, P., de Souza, J.N. (eds.) Service Assurance with Partial and Intermittent Resources, LNCS. vol. 3126, pp. 239–254. Springer, Heidelberg (2004). https://doi.org/10.1145/961268.961272

  13. Mascolo, C., Musolesi, M.: SCAR: context-aware adaptive routing in delay tolerant mobile sensor networks. In: Proceedings of the 2006 International Conference on Wireless Communications and Mobile Computing, pp. 533–538. IWCMC 2006, ACM, New York, NY, USA (2006). https://doi.org/10.1145/1143549.1143656

  14. Musolesi, M., Hailes, S., Mascolo, C.: Adaptive routing for intermittently connected mobile ad hoc networks. In: Sixth IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks, pp. 183–189, June 2005. https://doi.org/10.1109/WOWMOM.2005.17

  15. Musolesi, M., Mascolo, C.: CAR: Context-aware adaptive routing for delay-tolerant mobile networks. IEEE Trans. Mob. Comput. 8(2), 246–260 (2009). https://doi.org/10.1109/TMC.2008.107

    Article  Google Scholar 

  16. Penning, A., Baumgärtner, L., Höchst, J., Sterz, A., Mezini, M., Freisleben, B.: DTN7: an open-source disruption-tolerant networking implementation of bundle protocol 7. In: Palattella, M.R., Scanzio, S., Coleri Ergen, S. (eds.) ADHOC-NOW 2019. LNCS, vol. 11803, pp. 196–209. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31831-4_14

    Chapter  Google Scholar 

  17. Rosas, E., Garay, F., Hidalgo, N.: Context-aware self-adaptive routing for delay-tolerant networks in disaster scenarios. Ad Hoc Netw. 102, 102095 (2020). https://doi.org/10.1016/j.adhoc.2020.102095

    Article  Google Scholar 

  18. Spyropoulos, T., Psounis, K., Raghavendra, C.S.: Spray and wait: an efficient routing scheme for intermittently connected mobile networks. In: Proceedings of the 2005 ACM SIGCOMM Workshop on Delay-tolerant Networking, pp. 252–259. WDTN 2005, ACM, New York, NY, USA (2005). https://doi.org/10.1145/1080139.1080143

  19. Ullah, S., Qayyum, A.: Socially-aware adaptive delay-tolerant network (DTN) routing protocol. PLOS One. 17(1), 1–15 (2022). https://doi.org/10.1371/journal.pone.0262565

  20. Vahdat, A., et al.: Epidemic Routing for Partially connected Ad Hoc Networks. Technical report. CS-200006, Duke University (2000)

    Google Scholar 

Download references

Acknowledgements

This work is funded by the Hessian State Ministry for Higher Education, Research and the Arts (HMWK) (LOEWE emergenCITY, LOEWE Natur 4.0), and the German Research Foundation (DFG, Project 210487104 - Collaborative Research Center SFB 1053 MAKI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Sommer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sommer, M., Höchst, J., Sterz, A., Penning, A., Freisleben, B. (2022). ProgDTN: Programmable Disruption-Tolerant Networking. In: Koulali, MA., Mezini, M. (eds) Networked Systems. NETYS 2022. Lecture Notes in Computer Science, vol 13464. Springer, Cham. https://doi.org/10.1007/978-3-031-17436-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17436-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17435-3

  • Online ISBN: 978-3-031-17436-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics