Skip to main content

Mexican Avifauna of the Anthropocene

  • Chapter
  • First Online:
Mexican Fauna in the Anthropocene

Abstract

Mexico’s megadiverse avifauna includes many endemic taxa and unique diversity patterns, as well as species that are widely distributed across the Americas. Of the roughly 10,500 bird species currently recognized worldwide, about 11% are found in Mexico, and more than 200 species are considered endemic. However, according to national and international checklists, almost 44% of bird species are under some level of threat. The Mexican avifauna has suffered considerable changes due to anthropogenic disturbances (urbanization, habitat loss, and fragmentation), pollution across landscapes, and global climate change. Nonetheless, details of their response to accelerated landscape transformation and global warming remain somewhat opaque. In this chapter, we aim to: (i) present a general characterization of both ecological and geographic patterns in the bird taxa whose presence has been confirmed across Mexico; and (ii) document how anthropization factors like pollution, urbanization, land use change, and climate change have impacted the spatiotemporal patterns of avifauna biodiversity across the country. We then review how this knowledge has – or has not – resulted in effective conservation measures to ensure the long-term integrity of the avifauna. Based on this information, we discuss current challenges and future opportunities in these research topics. In a developing country like Mexico, where economic resources for conservation are limited, this information is crucial for long-term conservation policy decisions and for understanding the costs and consequences of inaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott CG (1933) Closing history of Guadalupe Caracara. Condor 35:10–14

    Article  Google Scholar 

  • Aguirre-Muñoz A, Croll DA, Donlan CJ et al (2008) High-impact conservation: invasive mammal eradications from the islands of western Mexico. Ambio 37:101–107

    Article  Google Scholar 

  • Ahola MP, Laaksonen T, Eeva T et al (2007) Climate change can alter competitive relationships between resident and migratory birds. J Anim Ecol 76:1045–1052

    Article  Google Scholar 

  • Álvarez Mondragón E, Morrone JJ (2004) Propuesta de áreas para la conservación de aves de México, empleando herramientas panbiogeográficas e índices de complementariedad. Interciencia 29:112–120

    Google Scholar 

  • Álvarez Romero J, Medellín RA, Oliveras De Ita A et al (2008) Animales exóticos en México: una amenaza para la biodiversidad. CONABIO-UNAM-SEMARNAT, México

    Google Scholar 

  • Ancona S, Sánchez-Colón S, Rodríguez C et al (2011) El Niño in the warm tropics: local sea temperature predicts breeding parameters and growth of blue-footed boobies. J Anim Ecol 80:799–808

    Article  Google Scholar 

  • Araújo MB, Luoto M (2007) The importance of biotic interactions for modelling species distributions under climate change. Glob Ecol Biogeogr 16:743–753

    Article  Google Scholar 

  • Arizmendi MC, Marquez-Valdelamar L (2000) Áreas de importancia para la conservación de las aves en México. CIPAMEX-CONABIO-CCA, México

    Google Scholar 

  • Arizmendi MC, Berlanga H, Rodríguez-Flores C et al (2016) Hummingbird conservation in Mexico: the natural protected areas system. Nat Areas J 36:366–376

    Article  Google Scholar 

  • Armendáriz-Villegas EJ, Covarrubias-García MA, Troyo-Diéguez E et al (2015) Metal mining and natural protected areas in Mexico: geographic overlaps and environmental implications. Environ Sci Pol 48:9–19

    Article  Google Scholar 

  • Atauchi PJ, Peterson AT, Flanagan J (2018) Species distribution models for Peruvian plantcutter improve with consideration of biotic interactions. J Avian Biol 49:jav-01617

    Article  Google Scholar 

  • Baiser B, Olden JD, Record S et al (2012) Pattern and process of biotic homogenization in the new Pangaea. Proc R Soc B: Biol Sci 279:4772–4777

    Article  Google Scholar 

  • Blanco A, Pérez G, Rodríguez B et al (2001) El zoológico de Moctezuma ¿Mito o realidad? Rev AMMVEPE 20:28–39

    Google Scholar 

  • Brodkorb P, Staebler AE (1939) The starling in Mexico. Wilson Bull 51:185

    Google Scholar 

  • Cabrera-Cruz SA, Cohen EB, Smolinsky JA et al (2020) Artificial light at night is related to broad-scale stopover distributions of nocturnally migrating landbirds along the Yucatan Peninsula, Mexico. Remote Sens 12:395

    Article  Google Scholar 

  • Calva-Soto K, Pavón NP (2018) La restauración ecológica en México: una disciplina emergente en un país deteriorado. Madera y bosques 24:e2411135

    Article  Google Scholar 

  • CANSEI (Comité Asesor Nacional sobre Especies Invasoras) (2010) Estrategia Nacional Sobre Especies Invasoras en México, Prevención, Control y Erradicación. Conabio-Conanp-Semarnat, Ciudad de México

    Google Scholar 

  • Carroll C, Dunk JR, Moilanen A (2010) Optimizing resiliency of reserve networks to climate change: multispecies conservation planning in the Pacific Northwest, USA. Glob Chang Biol 16:891–904

    Article  Google Scholar 

  • Carvalho RD, Cianciaruso MV, Trindade-Filho J et al (2010) Drafting a blueprint for functional and phylogenetic diversity conservation in the Brazilian Cerrado. Nat Conserv 8:171–176

    Article  Google Scholar 

  • Castillo-Chora V, Sánchez-González LA, Mastretta-Yanes A et al (2021) Insights into the importance of areas of climatic stability in the evolution and maintenance of avian diversity in the Mesoamerican dry forests. Biol J Linn Soc 132:741–758

    Article  Google Scholar 

  • Ceballos G, Ehrlich PR, Barnosky AD et al (2015) Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci Adv 1:e1400253

    Article  Google Scholar 

  • Ceyca JP, Castillo-Guerrero JA, García-Hernández J et al (2016) Local and interannual variations in mercury and cadmium in eggs of eight seabird species of the Sinaloa coast, México. Environ Toxicol Chem 35:2330–2338

    Article  CAS  Google Scholar 

  • Ceyca-Contreras JP, Cortés-Gutiérrez E, García-Salas M et al (2020) Evaluation of the genotoxic effect of heavy metals in pigeons from urban and rural habitat in Monterrey, Mexico using the chromatin dispersion assay. Biomarkers 25:670–676

    Article  CAS  Google Scholar 

  • Chapa-Vargas L, Mejía-Saavedra JJ, Monzalvo-Santos K et al (2010) Blood lead concentrations in wild birds from a polluted mining region at Villa de la Paz, San Luis Potosí, Mexico. J Environ Sci Health A 45:90–98

    Article  CAS  Google Scholar 

  • Christensen AF (2000) The fifteenth- and twentieth-century colonization of the basin of Mexico by the great-tailed grackle (Quiscalus mexicanus). Glob Ecol Biogeogr 9:415–420

    Article  Google Scholar 

  • Clavel J, Julliard R, Devictor V (2011) Worldwide decline of specialist species: toward a global functional homogenization? Front Ecol Environ 9:222–228

    Article  Google Scholar 

  • CONABIO (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad) (2021) Especies exóticas invasoras. https://www.biodiversidad.gob.mx/especies/Invasoras/cuales-son. Accessed 15 Sept 2021

  • CONANP (Comisión Nacional de Áreas Naturales Protegidas) (2021) Listado de las Áreas Naturales Protegidas de México (LISTANP). http://sig.conanp.gob.mx/website/pagsig/listanp/. Accessed 23 Sept 2021

  • Corlett RT (2015) The Anthropocene concept in ecology and conservation. Trends Ecol Evol 30:36–41

    Article  Google Scholar 

  • Corona-M E (2020) El Guajolote: apuntes de una historia geográfica compleja. Suplemento Cultural El Tlacuache 963. Available from: https://www.inah.gob.mx/images/otros/20201209_tlacuache_963.pdf. Accessed 23 Sept 2021

  • Corral Flores L (2018) National tree clearing program: an environmental crime for Mexico. In: Arroyo-Quiroz I, Wyatt T (eds) Green crime in Mexico: a collection of case studies. Springer, Cham, pp 75–86

    Chapter  Google Scholar 

  • Cuervo-Robayo AP, Ureta C, Gómez-Albores MA et al (2020) One hundred years of climate change in Mexico. PLoS One 15:e0209808

    Article  CAS  Google Scholar 

  • de Matos Sousa NO, Lopes LE, Costa LM et al (2021) Adopting habitat-use to infer movement potential and sensitivity to human disturbance of birds in a Neotropical Savannah. Biol Conserv 254:108921

    Article  Google Scholar 

  • Delgado G, Fortoul G, Rosiles M (1994) Lead, chromium, and cadmium concentrations and their relationship to tissue morphological alterations in pigeons (Columba livia) from the valley of Mexico City and Ixtlahuaca in the state of Mexico. Vet Mex 25:109–115

    Google Scholar 

  • Devictor V, Mouillot D, Meynard C et al (2010) Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol Lett 13:1030–1040

    Google Scholar 

  • Diaz S, Fargione J, Chapin FS et al (2006) Biodiversity loss threatens human well-being. PLoS Biol 4:e277

    Article  Google Scholar 

  • Donald PF, Fishpool LD, Ajagbe A et al (2018) Important bird and biodiversity areas (IBAs): the development and characteristics of a global inventory of key sites for biodiversity. Bird Conserv Int 29:177–198

    Article  Google Scholar 

  • Echeverría-García A, Gold-Bouchot G (2013) Lead concentrations in sediments and blue-winged teals (Anas discors) from El Palmar state reserve, Yucatan, Mexico. Arch Environ Contam Toxicol 65:588–597

    Article  Google Scholar 

  • Escalante P, Navarro AG, Peterson AT (1998) Un análisis geográfico, ecológico e histórico de la diversidad de aves terrestres de México. In: Ramamorthy TP, Bye R, Lot A, Fa J (eds) Diversidad biológica de México: orígenes y distribución. UNAM, Ciudad de México, pp 279–297

    Google Scholar 

  • Esperon-Rodriguez M, Beaumont LJ, Lenoir J et al (2019) Climate change threatens the most biodiverse regions of Mexico. Biol Conserv 240:108215

    Article  Google Scholar 

  • FAO (Organization for Food and Agriculture for the United States) (2001) Global resources assessment. Forestry Paper 140. Available from: http//:www.fao.org/forestry/fro/fra/index.jsp. Accessed 25 Mar 2021

  • Feeley KJ, Rehm EM, Machovina B (2012) Perspective: the responses of tropical forest species to global climate change: acclimate, adapt, migrate, or go extinct? Front Biogeogr 4:2

    Article  Google Scholar 

  • Ferro I, Navarro-Sigüenza AG, Morrone JJ (2017) Biogeographical transitions in the Sierra Madre Oriental, Mexico, shown by chorological and evolutionary biogeographical affinities of Passerine birds (Aves: Passeriformes). J Biogeogr 44:2145–2160

    Article  Google Scholar 

  • Garamszegi LZ (2011) Climate change increases the risk of malaria in birds. Glob Chang Biol 17:1751–1759

    Article  Google Scholar 

  • Garamszegi LZ, Erritzøe J, Møller AP (2007) Feeding innovations and parasitism in birds. Biol J Linn Soc 90:441–455

    Article  Google Scholar 

  • Golicher DJ, Cayuela L, Newton AC (2012) Effects of climate change on the potential species richness of Mesoamerican forests. Biotropica 44:284–293

    Article  Google Scholar 

  • Gómez-Martínez MA, Klem D Jr, Rojas-Soto O et al (2019) Window strikes: bird collisions in a Neotropical green city. Urban Ecosyst 22:699–708

    Article  Google Scholar 

  • González-Acevedo AJ, García-Salas J, Gosálvez J et al (2016) Evaluation of environmental genotoxicity by commet assay in Columba livia. Toxicol Mech Methods 26:61–66

    Article  Google Scholar 

  • González-Gallina A, Benítez-Badillo G, Rojas-Soto O et al (2013) The small, the forgotten and the dead: highway impact on vertebrates and its implications for mitigation strategies. Biodivers Conserv 22:325–342

    Article  Google Scholar 

  • González-Oreja JA, De La Fuente-Díaz-Ordaz AA, Hernández-Santín L et al (2012) Can human disturbance promote nestedness? Songbirds and noise in urban parks as a case study. Landsc Urban Plan 104:9–18

    Article  Google Scholar 

  • Gress F, Risebrough RW, Anderson DW et al (1973) Reproductive failures of double-crested cormorants in Southern California and Baja California. Wilson Bull 85:197–208

    Google Scholar 

  • Guzmán-Velasco A, Ramírez-Cruz JI, Ruíz-Aymá G et al (2021) Great-tailed grackles (Quiscalus mexicanus) as biomonitors of atmospheric heavy metal pollution in urban areas of Monterrey, Mexico. Bull Environ Contam Toxicol 106:983–988

    Article  Google Scholar 

  • Haemig PD (2010) Ecology and ethnobiology of the slender-billed grackle Quiscalus palustris. J Ornithol 151:391–399

    Article  Google Scholar 

  • Haemig PD (2011) Introduction of the great-tailed grackle by Aztec emperor Auitzotl: four-stage analysis with new information. Ardeola 58:387–397

    Article  Google Scholar 

  • Hager SB, Cosentino BJ, Aguilar-Gómez MA et al (2017) Continent-wide analysis of how urbanization affects bird-window collision mortality in North America. Biol Conserv 212:209–215

    Article  Google Scholar 

  • Hannah L, Midgley G, Andelman S et al (2007) Protected area needs in a changing climate. Front Ecol Environ 5:131–138

    Article  Google Scholar 

  • Hannah L, Flint L, Syphard AD et al (2014) Fine-grain modeling of species’ response to climate change: holdouts, stepping-stones, and microrefugia. Trends Ecol Evol 29:390–397

    Article  Google Scholar 

  • Hernández-Lara C, Carbó-Ramírez P, Santiago-Alarcon D (2020) Effects of land use change (rural-urban) on the diversity and epizootiological parameters of avian Haemosporida in a widespread neotropical bird. Acta Trop 209:105542

    Article  Google Scholar 

  • Hiley JR, Bradbury RB, Thomas CD (2016) Impacts of habitat change and protected areas on alpha and beta diversity of Mexican birds. Divers Distrib 22:1245–1254

    Article  Google Scholar 

  • Hobbs RJ, Higgs E, Harris JA (2009) Novel ecosystems: implications for conservation and restoration. Trends Ecol Evol 24:599–605

    Article  Google Scholar 

  • Hobson EA, Smith-Vidaurre G, Salinas-Melgoza A (2017) History of nonnative monk parakeets in Mexico. PLoS One 12:e0184771

    Article  Google Scholar 

  • Howell SNG, Webb S (1995) A guide to the birds of Mexico and northern Central America. Oxford University Press, Oxford

    Google Scholar 

  • Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18

    Article  Google Scholar 

  • Íñigo Elías EE, Enkerlin Hoeflich EC (2002) Amenazas, estrategias e instrumentos para la conservación de las aves. In: Gómez de Silva H, Oliveras de Ita A (eds) Conservación de aves. Experiencias en México. CIPAMEX, México

    Google Scholar 

  • IUCN (International Union for Conservation of Nature) (2021) The IUCN Red List of Threatened Species. https://www.iucnredlist.org/. Accessed 15 July 2021

  • Jetz W, Wilcove DS, Dobson AP (2007) Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol 5:1211–1219

    Article  CAS  Google Scholar 

  • Jiménez Sierra CL, Sosa Ramírez J, Cortés Calva P et al (2014) México país megadiverso y la relevancia de las áreas naturales protegidas. Investigación y Ciencia – Universidad Autónoma de Aguascalientes 60:16–22

    Google Scholar 

  • Kareiva P, Watts S, McDonald R et al (2007) Domesticated nature: shaping landscapes and ecosystems for human welfare. Science 316:1866–1869

    Article  CAS  Google Scholar 

  • Keitt B, Wilcox C, Tershy B et al (2002) The effect of feral cats on the population viability of black-vented shearwaters (Puffinus opisthomelas) on Natividad Island, Mexico. Anim Conserv 5:217–223

    Article  Google Scholar 

  • Kiere LM, Osorio-Beristain M, Sorani V et al (2021) Do metal mines and their runoff affect plumage color? Streak-backed Orioles in Mexico show unexpected patterns. Ornithol Appl 123:duab023

    Google Scholar 

  • Koh LP, Gardner TA (2010) Conservation in human-modified landscapes. In: Sodhi NS, Ehrlich PR (eds) Conservation biology for all. Oxford University Press, Oxford, pp 236–261

    Chapter  Google Scholar 

  • Koleff P, Alfaro RM, Golubov J et al (2021) Invasive alien species in Mexico. In: Pullaiah T, Ielmini MR (eds) Invasive alien species. Willey, Hoboken, NJ, pp 77–92

    Chapter  Google Scholar 

  • Lawler JJ, Shafer SL, White D et al (2009) Projected climate-induced faunal change in the Western Hemisphere. Ecology 90:588–597

    Article  Google Scholar 

  • Lenoir J, Gégout JC, Marquet PA et al (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 30:1768–1771

    Article  Google Scholar 

  • Leopold AS (1959) Wildlife of Mexico; the game birds and mammals. University of California Press, Berkeley

    Book  Google Scholar 

  • Levey DR, Estrada A, Enríquez PL et al (2021) The importance of forest-nonforest transition zones for avian conservation in a vegetation disturbance gradient in the Northern Neotropics. Trop Conserv Sci 14:1–14

    Article  Google Scholar 

  • Lewis SL, Maslin MA (2015) Defining the anthropocene. Nature 519:171–180

    Article  CAS  Google Scholar 

  • Llamas R (1935) La alimentación de los antiguos mexicanos. An Inst Biol UNAM 6:245–261

    Google Scholar 

  • Loarie SR, Duffy PB, Hamilton H et al (2009) The velocity of climate change. Nature 462:1052–1055

    Article  CAS  Google Scholar 

  • López-Medellín X, Navarro-Sigüenza AG, Bocco G (2011) Human population, economic activities, and wild bird conservation in Mexico: factors influencing their relationships at two different geopolitical scales. Rev Mex Biodivers 82:1267–1278

    Google Scholar 

  • Loss S, Will T, Marra P (2013) The impact of free-ranging domestic cats on wildlife of the United States. Nat Commun 4:1396

    Article  Google Scholar 

  • Lovejoy TE, Hannah L (2019) Biodiversity and climate change: transforming the biosphere. Yale University Press, London

    Book  Google Scholar 

  • MacGregor-Fors I, Schondube JE (2011a) Use of tropical dry forests and agricultural areas by Neotropical bird communities. Biotropica 43:365–370

    Article  Google Scholar 

  • MacGregor-Fors I, Schondube JE (2011b) Gray vs. green urbanization: relative importance of urban features for urban bird communities. Basic Appl Ecol 12:372–381

    Article  Google Scholar 

  • MacGregor-Fors I, Morales-Pérez L, Quesada J et al (2010) Relationship between the presence of House Sparrows (Passer domesticus) and Neotropical bird community structure and diversity. Biol Invasions 12:87–96

    Article  Google Scholar 

  • MacGregor-Fors I, Calderón-Parra R, Meléndez-Herrada A et al (2011) Pretty, but dangerous! Records of non-native Monk Parakeets (Myiopsitta monachus) in Mexico. Rev Mex Biodivers 82:1053–1956

    Google Scholar 

  • MacGregor-Fors I, Gómez-Martínez MA, García-Arroyo M et al (2020) A dead letter? Urban conservation, management, and planning strategies from the Mexican urban bird literature. Urban Ecosyst 23:1107–1115

    Article  Google Scholar 

  • MacGregor-Fors I, Escobar-Ibáñez JF, Schondube JE et al (2021) The urban contrast: a nationwide assessment of avian diversity in Mexican cities. Sci Total Environ 53:141915

    Article  Google Scholar 

  • Manin A, Corona ME, Alexander M et al (2018) Diversity of management strategies in Mesoamerican turkeys: archaeological, isotopic and genetic evidence. R Soc Open Sci 5:171613

    Article  Google Scholar 

  • Mann RM, Vijver MG, Peijnenburg WJGM (2011) Metals and metalloids in terrestrial systems: biomagnification and subsequent adverse effects. In: Sánchez-Bayo F, van den Brink PJ, Mann RM (eds) Ecological impacts of toxic chemicals. Bentham Science Publishers Ltd, Sharjah, pp 43–62

    Chapter  Google Scholar 

  • Manzanares Mena L, Macías Garcia C (2018) Songbird community structure changes with noise in an urban reserve. J Urban Ecol 4:juy022

    Article  Google Scholar 

  • Martínez-Morales MA, Zuria I, Chapa-Vargas L et al (2010) Current distribution and predicted geographic expansion of the Rufous-backed robin in Mexico: a fading endemism? Divers Distrib 16:786–797

    Article  Google Scholar 

  • Maya-Elizarrarás E, Schondube JE (2015a) Birds, cattle, and bracken ferns: bird community responses to a Neotropical landscape shaped by cattle grazing activities. Biotropica 47:236–245

    Article  Google Scholar 

  • Maya-Elizarrarás E, Schondube JE (2015b) Birds, charcoal and cattle: bird community responses to human activities in an oak forest landscape shaped by charcoal extraction. For Ecol Manag 335:118–128

    Article  Google Scholar 

  • Mayani-Parás F, Botello F, Castañeda S et al (2020) Cumulative habitat loss increases conservation threats on endemic species of terrestrial vertebrates in Mexico. Biol Conserv 253:108864

    Article  Google Scholar 

  • Mazel F, Pennell MW, Cadotte MW et al (2018) Prioritizing phylogenetic diversity captures functional diversity unreliably. Nat Commun 9:1–9

    Article  CAS  Google Scholar 

  • McDonnell MJ, MacGregor-Fors I (2016) The ecological future of cities. Science 352:936–938

    Article  CAS  Google Scholar 

  • McGill BJ, Dornelas M, Gotelli NJ et al (2015) Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol Evol 30:104–113

    Article  Google Scholar 

  • McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453

    Article  CAS  Google Scholar 

  • Melo FP, Arroyo-Rodriguez V, Fahrig L et al (2013) On the hope for biodiversity-friendly tropical landscapes. Trends Ecol Evol 28:462–468

    Article  Google Scholar 

  • Mendenhall CD, Archer HM, Brenes FO et al (2013) Balancing biodiversity with agriculture: land sharing mitigates avian malaria prevalence. Conserv Lett 6:125–131

    Article  Google Scholar 

  • Mendoza-Ponce AV, Corona-Núñez RO, Kraxner F et al (2020) Spatial prioritization for biodiversity conservation in a megadiverse country. Anthropocene 32:100267

    Article  Google Scholar 

  • Monzalvo-Santos K, Alfaro-De la Torre MC, Chapa-Vargas L et al (2016) Arsenic and lead contamination in soil and in feathers of three resident passerine species in a semi-arid mining region of the Mexican plateau. J Environ Sci Health A 51:825–832

    Article  CAS  Google Scholar 

  • Moranta J, Torres C, Murray I et al (2021) Transcending capitalism growth strategies for biodiversity conservation. Conserv Biol 36:e13821

    Google Scholar 

  • Moreno-Contreras I, Gómez de Silva H, Andrade-González V et al (2019) Disentangling an avian assemblages’ evolutionary and functional history in a Chihuahuan desert city. Urban Ecosyst 22:893–906

    Article  Google Scholar 

  • Naime J, Mora F, Sánchez-Martínez M et al (2020) Economic valuation of ecosystem services from secondary tropical forests: trade-offs and implications for policy making. For Ecol Manag 473:118294

    Article  Google Scholar 

  • Nava-Díaz R, Pineda López R, Dorantes Euan A (2020) Drivers of functional composition of bird assemblages in green spaces of a Neotropical City: a case study from Merida, Mexico. Trop Conserv Sci 13:1–13

    Article  Google Scholar 

  • Navarijo Ornelas ML (2006) Some aspects of the art of feather works in pre-Hispanic México. Nuevo Mundo Mundos Nuevos 6. Available from: http://nuevomundo.revues.org/document1603.html. Accessed 23 Sept 2021

  • Navarro-Sigüenza AG, Peterson AT (2007) Mapas de las aves de México basados en WWW. Informe final SNIB Conabio proyecto No. CE015, Ciudad de México

    Google Scholar 

  • Navarro-Sigüenza AG, Ortiz-Pulido R, Peterson AT (2008) Un panorama breve de la historia de la ornitología mexicana. Ornitol Neotrop 19(Suppl):367–379

    Google Scholar 

  • Navarro-Sigüenza AG, Lira-Noriega A, Arizmendi MC et al (2011) Áreas de conservación para las aves: hacia la integración de criterios de priorización. In: Koleff P, Urquiza-Haas T (eds) Planeación para la conservación de la biodiversidad terrestre en México: retos en un país megadiverso. Conabio-Conanp, Ciudad de México, pp 109–129

    Google Scholar 

  • Navarro-Sigüenza AG, Rebón-Gallardo M, Gordillo-Martínez A et al (2014a) Biodiversidad de aves en México. Rev Mex Biodivers 85:S476–S495

    Article  Google Scholar 

  • Navarro-Sigüenza AG, Gómez de Silva H, Gual-Díaz M et al (2014b) La importancia de las aves del Bosque Mesófilo de Montaña de México. In: Gual-Díaz M, Rendón-Correa A (eds) Bosques mesófilos de montaña de México: diversidad, ecología y manejo. Conabio, México, pp 279–304

    Google Scholar 

  • Navarro-Sigüenza AG, Sánchez-González LA, Peterson AT (2015) La información ornitológica en el manuscrito de las aves novohispanas de José Mariano Mociño. In: La Real Expedición Botánica a Nueva España. Volumen XIII. Ornitología. UNAM- El Colegio de Sinaloa-Siglo XXI Editores, México, pp 39–46

    Google Scholar 

  • Nori J, Loyola R, Villalobos F (2020) Priority areas for conservation of and research focused on terrestrial vertebrates. Conserv Biol 34:1281–1291

    Article  Google Scholar 

  • Ochoa-Ochoa LM, Munguía M, Lira-Noriega A et al (2014) Spatial scale and β-diversity of terrestrial vertebrates in Mexico. Rev Mex Biodivers 85:918–930

    Article  Google Scholar 

  • Ochoa-Ochoa LM, Flores-Villela O, Ríos-Muñoz CA et al (2017) Mexico’s ambiguous invasive species plan. Science 355:1033

    Article  CAS  Google Scholar 

  • Olden JD, Poff NL (2003) Toward a mechanistic understanding and prediction of biotic homogenization. Am Nat 162:442–460

    Article  Google Scholar 

  • Olden JD, Poff NL, Douglas MR et al (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24

    Article  Google Scholar 

  • Ortega JC, Machado N, Diniz-Filho JAF et al (2019) Meta-analyzing the likely cross-species responses to climate change. Ecol Evol 9:11136–11144

    Article  Google Scholar 

  • Ortega-Álvarez R, Calderón-Parra R (2014) Hunting the unexpected: Harris’s Hawks (Parabuteo unicinctus) preying on bats in a Neotropical megacity. Rev Bras Ornitol 22:297–299

    Article  Google Scholar 

  • Ortega-Álvarez R, Lindig-Cisneros R (2012) Feathering the scene: the effects of ecological restoration on birds and the role birds play in evaluating restoration outcomes. Ecol Restor 30:116–127

    Article  Google Scholar 

  • Ortega-Álvarez R, MacGregor-Fors I (2009) Living in the big city: effects of urban land-use on bird community structure, diversity, and composition. Landsc Urban Plan 90:189–195

    Article  Google Scholar 

  • Ortiz-Pulido R (2018) ¿Qué especies de aves están en riesgo en México? Huitzil 19:237–272

    Google Scholar 

  • Pearson R, Martínez-Meyer E, Andrade Velázquez M et al (2019) Research priorities for maintaining biodiversity’s contributions to people in Latin America. UCL Open Environ Preprint 1:02

    Google Scholar 

  • Peterson AT, Navarro-Sigüenza AG (2006) Hundred-year changes in the avifauna of the Valley of Mexico, Distrito Federal, Mexico. Huitzil 7:4–14

    Article  Google Scholar 

  • Peterson AT, Navarro-Sigüenza AG (2016) Bird conservation and biodiversity research in Mexico: status and priorities. J Field Ornithol 87:121–132

    Article  Google Scholar 

  • Peterson AT, Ortega-Huerta MA, Bartley J et al (2002) Future projections for Mexican faunas under global climate change scenarios. Nature 416:626

    Article  CAS  Google Scholar 

  • Peterson AT, Komar N, Komar O et al (2004) West Nile virus in the New World: potential impacts on bird species. Bird Conserv Int 14:215–232

    Article  Google Scholar 

  • Peterson AT, Navarro-Sigüenza AG, Martínez-Meyer E et al (2015) Twentieth century turnover of Mexican endemic avifaunas: landscape change versus climate drivers. Sci Adv 1:e1400071

    Article  Google Scholar 

  • Peterson AT, Navarro-Sigüenza AG, Gordillo-Martínez A (2016) The development of ornithology in Mexico and the importance of access to scientific information. Arch Nat Hist 43:294–304

    Article  Google Scholar 

  • Prieto-Torres DA, Navarro-Sigüenza AG, Santiago-Alarcon D et al (2016) Response of the endangered tropical dry forests to climate change and the role of Mexican Protected Areas for their conservation. Glob Chang Biol 22:364–337

    Article  Google Scholar 

  • Prieto-Torres DA, Nori J, Rojas-Soto OR (2018) Identifying priority conservation areas for birds associated to endangered Neotropical dry forests. Biol Conserv 228:205–214

    Article  Google Scholar 

  • Prieto-Torres DA, Lira-Noriega A, Navarro-Sigüenza AG (2020) Climate change promotes species loss and uneven modification of richness patterns in the avifauna associated to Neotropical seasonally dry forests. Perspect Ecol Conser 18:19–30

    Google Scholar 

  • Prieto-Torres DA, Nori J, Rojas-Soto OR et al (2021a) Challenges and opportunities in planning for the conservation of Neotropical seasonally dry forests into the future. Biol Conserv 257:109083

    Article  Google Scholar 

  • Prieto-Torres DA, Nuñez Rosas LE, Figueroa Remolina D et al (2021b) Most Mexican hummingbirds lose under climate and land-use change: long-term conservation implications. Perspect Ecol Conserv 19:487–499

    Google Scholar 

  • Prieto-Torres DA, Sánchez-González LA, Ortiz-Ramírez MF et al (2021c) Climate warming affects spatio-temporal biodiversity patterns of a highly vulnerable Neotropical avifauna. Clim Chang 165:57

    Article  Google Scholar 

  • Puga-Caballero A, MacGregor-Fors I, Ortega-Alvarez R (2014) Birds at the urban fringe: avian community shifts in different peri-urban ecotones of a megacity. Ecol Res 29:619–628

    Article  Google Scholar 

  • Puga-Caballero A, Arizmendi MC, Sánchez-González LA (2020) Phylogenetic and phenotypic filtering in hummingbirds from urban environments in Central Mexico. Evol Ecol 34:525–541

    Article  Google Scholar 

  • Rahel FJ (2007) Biogeographic barriers, connectivity and homogenization of freshwater faunas: it’s a small world after all. Freshw Biol 52:696–710

    Article  Google Scholar 

  • Rahel FJ (2010) Homogenization, differentiation, and the widespread alteration of fish faunas. Am Fish Soc Symp 73:311–326

    Google Scholar 

  • Ramírez-Acosta JA, Castellanos G, Arnaud A et al (2012) Conservation of endemic terrestrial vertebrates in the protected areas of the Baja California Peninsula, Mexico. Nat Areas J 32:15–30

    Article  Google Scholar 

  • Ramírez-Albores JE, Prieto-Torres DA, Gordillo-Martínez A et al (2021) Insights into protection of high species-richness areas for the conservation of Mesoamerican endemic birds. Divers Distrib 27:18–33

    Article  Google Scholar 

  • Ramírez-Bastida P, Navarro-Sigüenza AG, Meléndez-Herrada A et al (2017) Propuesta de Plan de Manejo del Perico Monje (Myiopsitta monachus). CONABIO, México

    Google Scholar 

  • Ramírez-Bastida P, Meléndez-Herrada A, López-Saut EG et al (2018) Importancia de los ambientes acuáticos urbanos para las aves nativas: el caso de la zona metropolitana de la Ciudad de México. In: Ramírez-Bautista A, Pineda-López R (eds) Ecología y Conservación de Fauna en Ambientes Antropizados. REFAMA-CONACyT-UAQ, México, pp 5–28

    Google Scholar 

  • Ramírez-Cruz GA, Ortega-Álvarez R (2021) Identifying management guidelines to control the invasive House Sparrow (Passer domesticus) within natural protected areas through the estimation of local colonization and extinction probabilities. Biol Invasions 23:3767–3776

    Article  Google Scholar 

  • Ríos-Muñoz CA (2002) La diversidad perdida: las aves desaparecidas de México. In: Gómez de Silva H, Oliveras de Ita A (eds) Conservación de aves. Experiencias en México. CIPAMEX, México, pp 69–72

    Google Scholar 

  • Rivera-López A, MacGregor-Fors I (2016) Urban predation: a case study assessing artificial nest survival in a neotropical city. Urban Ecosyst 19:649–655

    Article  Google Scholar 

  • Rojas-Soto OR, Sosa V, Ornelas JF (2012) Forecasting cloud forest in eastern and southern Mexico: conservation insights under future climate change scenarios. Biodivers Conserv 21:2671–2690

    Article  Google Scholar 

  • Root TL, Price JT, Hall KR et al (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  CAS  Google Scholar 

  • Rozzi R (2013) Biocultural ethics: From biocultural homogenization toward biocultural conservation. In: Rozzi R, STA P, Palmer C et al (eds) Linking ecology and ethics for a changing world. Values, philosophy, and action. Springer, pp 9–32

    Chapter  Google Scholar 

  • Rull V, Carnaval AC (2020) Neotropical diversification: patterns and processes. Springer, Cham

    Book  Google Scholar 

  • Salgado-Negret B, Paz H (2016) Escalando de los rasgos funcionales a procesos poblacionales, comunitarios y ecosistémicos. In: Salgado-Negret B (ed) La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, pp 12–35

    Google Scholar 

  • Sánchez-González LA, Navarro-Sigüenza AG (2009) History meets ecology: a geographical analysis of ecological restriction in the Neotropical humid montane forests avifaunas. Divers Distrib 15:1–11

    Article  Google Scholar 

  • Sánchez-Romero R, Balvanera P, Castillo A et al (2021) Management strategies, silvopastoral practices and socioecological drivers in traditional livestock systems in tropical dry forests: an integrated analysis. For Ecol Manag 479:118506

    Article  Google Scholar 

  • Santiago-Alarcon D, MacGregor-Fors I, Falfán I et al (2019) Parasites in space and time: a case study of haemosporidian spatiotemporal prevalence in urban birds. Int J Parasitol 49:235–246

    Article  Google Scholar 

  • Sauvé S, Desrosiers M (2014) A review of what is an emerging contaminant. Chem Cent J 8:15

    Article  Google Scholar 

  • Schmitz RA, Aguirre AA, Cook RS et al (1990) Lead poisoning of Caribbean flamingos in Yucatan, Mexico. Wildl Soc Bull 18:399–404

    Google Scholar 

  • Schwartz CW, Somerville AD, Nelson BA et al (2021) Investigating pre-Hispanic scarlet macaw origins through radiogenic strontium isotope analysis at Paquimé in Chihuahua, Mexico. J Anthropol Archaeol 61:101256

    Article  Google Scholar 

  • Şekercioğlu ÇH (2006) Increasing awareness of avian ecological function. Trends Ecol Evol 21:464–471

    Article  Google Scholar 

  • Şekercioğlu ÇH (2011) Functional extinctions of bird pollinators cause plant declines. Science 331:1019–1020

    Article  Google Scholar 

  • Şekercioğlu ÇH, Primack RB, Wormworth J (2012) The effects of climate change on tropical birds. Biol Conserv 148:1–18

    Article  Google Scholar 

  • SEMARNAT (Secretaría del Medio Ambiente y Recursos Naturales) (2019) Modificación del Anexo Normativo III, Lista de especies en riesgo de la Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. Diario Oficial de la Federación, 14 de noviembre de 2019, México

    Google Scholar 

  • Sierra-Morales P, Rojas-Soto O, Ríos-Muñoz CA et al (2021) Climate change projections suggest severe decreases in the geographic ranges of bird species restricted to Mexican humid mountain forests. Glob Ecol Conserv 30:e01794

    Article  Google Scholar 

  • Silva JLSE, Cruz-Neto O, Peres CA et al (2019) Climate change will reduce suitable Caatinga dry forest habitat for endemic plants with disproportionate impacts on specialized reproductive strategies. PLoS One 14:e0217028

    Article  CAS  Google Scholar 

  • Soldatini C, Sebastiano M, Albores-Barajas YV et al (2020) Mercury exposure in relation to foraging ecology and its impact on the oxidative status of an endangered seabird. Sci Total Environ 724:138131

    Article  CAS  Google Scholar 

  • Stattersfield AJ, Crosby MJ, Long AJ et al (1998) Endemic bird areas of the world: priorities for biodiversity conservation. Birdlife Conservation Series Birdlife International, Cambridge

    Google Scholar 

  • Suárez-Rodríguez M, Macías Garcia C (2014) There is no such a thing as a free cigarette; lining nests with discarded butts brings short-term benefits, but causes toxic damage. J Evol Biol 27:2719–2726

    Article  Google Scholar 

  • Suárez-Rodríguez M, López-Rull I, Macías Garcia C (2013) Incorporation of cigarette butts into nests reduces nest ectoparasite load in urban birds: new ingredients for an old recipe? Biol Lett 9:20120931

    Article  Google Scholar 

  • Suárez-Rodríguez M, Montero-Montoya RD, Macías Garcia C (2017) Anthropogenic nest materials may increase breeding costs for urban birds. Front Ecol Evol 5:4

    Article  Google Scholar 

  • Turvey ST, Crees JJ (2019) Extinction in the Anthropocene. Curr Biol 29:982–986

    Article  Google Scholar 

  • Uribe-Morfín P, Gómez-Martínez MA, Moreles-Abonce L et al (2020) The invisible enemy: understanding bird-windowstrikes through citizen science in a focal city. Ecol Res 36:430–439

    Article  Google Scholar 

  • Vázquez-Reyes LD, Arizmendi MC, Godínez-Álvarez HO et al (2017) Directional effects of biotic homogenization of bird communities in Mexican seasonal forests. Condor 119:275–288

    Article  Google Scholar 

  • Vázquez-Reyes LD, Cayetano-Rosas H, Caballero-Jiménez R et al (2020) Opportunistic feeding on fly maggots by Spotted Wren (Campylorhynchus gularis). Southwest Nat 64:143–145

    Article  Google Scholar 

  • Vázquez-Reyes LD, Paz-Hernández H, Godínez-Álvarez HO et al (2022) Trait shifts in bird communities from primary forest to human settlements in Mexican seasonal forests. Are there ruderal birds? Perspect Ecol Conserv 20:117–125

    Google Scholar 

  • Weir JT, Hey J (2006) Divergent timing and patterns of species accumulation in lowland and highland neotropical birds. Evolution 60:842–855

    Google Scholar 

  • White HJ, Montgomery WI, Storchová L et al (2018) Does functional homogenization accompany taxonomic homogenization of British birds and how do biotic factors and climate affect these processes? Ecol Evol 8:7365–7377

    Article  Google Scholar 

  • Wiens JJ, Donoghue MJ (2004) Historical biogeography, ecology and species richness. Trends Ecol Evol 19:639–644

    Article  Google Scholar 

  • Zamora-Gutierrez V, Pearson RG, Green RE et al (2018) Forecasting the combined effects of climate and land use change on Mexican bats. Divers Distrib 24:363–374

    Google Scholar 

  • Zúñiga-Vega JJ, Solano-Zavaleta I, Sáenz-Escobar MF et al (2019) Habitat traits that increase the probability of occupancy of migratory birds in an urban ecological reserve. Acta Oecol 101:103480

    Article  Google Scholar 

Download references

Acknowledgments

We thank the editors of the book for the useful comments and for inviting us to write this chapter; it has opened our eyes to the complexity of the biodiversity crisis and conservation across Mexico. Daniela Remolina-Figueroa, Jenifer Vargas, Giovani Medrano, Acis González, Ek Rodríguez, Luis Diego Martínez, Ilse Gutierrez, Alexis Mendoza, Oscar Brito, and Mónica Ramos, helped in surveying the literature used for analyses. We also thank the Dirección General de Asuntos del Personal Académico from Universidad Nacional Autónoma de México (DGAPA-UNAM; PAPIIT projects: IN215818; IN221920, IN214621; IA202822; IA210820), the Programa de Investigación en Cambio Climatico (PINCC-UNAM [grant to DAP-T and MCA]), the Rufford Foundation (DAP-T 16017-1; DAP-T 20284-2; DAP-T 28502B), the Consejo Nacional de Ciencia y Tecnología (CONACyT; project 152060), and the Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO; project JM071) for the financial support that allowed us to perform the research and produce the illustrations that are included in this chapter. We thank BioPic (Biosphera Picture AC) for allowing the use of photos in Fig. 8.1

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adolfo G. Navarro-Sigüenza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prieto-Torres, D.A. et al. (2023). Mexican Avifauna of the Anthropocene. In: Jones, R.W., Ornelas-García, C.P., Pineda-López, R., Álvarez, F. (eds) Mexican Fauna in the Anthropocene. Springer, Cham. https://doi.org/10.1007/978-3-031-17277-9_8

Download citation

Publish with us

Policies and ethics