Skip to main content

Mexican Fauna in Agroecosystems: Challenges, Opportunities and Future Directions

  • Chapter
  • First Online:
Mexican Fauna in the Anthropocene

Abstract

Agroecosystems play a central role in the environmental crisis that considerably affects the functioning of the ecosystems worldwide. In Mexico, the expansion of agroecosystems is the main cause of deforestation and one of the main threats to its biodiversity. Food production and human well-being depend on ecosystem services provided by biodiversity, so it is essential to rethink the way food is produced in countries as biologically and culturally diverse as Mexico. In this chapter, we analyze the information generated about the impacts of agroecosystems on the native fauna of Mexico (with emphasis on bats, birds, and insects). We discuss the efforts implemented to reduce negative impacts, the importance of the ecosystem services provided by fauna, the areas of opportunity for conservation in such systems, and the areas where it is necessary to increase efforts to generate information for evidence-based conservation and decision making to move towards sustainability in landscapes dominated by human activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31

    Article  Google Scholar 

  • Alvarez-Alvarez EA, Corcuera P, Almazán-Núñez RC (2018) Spatiotemporal variation in the structure and diet types of bird assemblages in tropical dry forest in southwestern Mexico. Wilson J Ornithol 130:457–469

    Article  Google Scholar 

  • Arias-González JE, Rodríguez-Peña ON, Almeida-Leñero L et al (2016) Cambios en la biodiversidad y sus consecuencias en el funcionamiento de los ecosistemas y sus servicios. In: Balvanera P, Arias-González JE, Rodríguez-Estrella R et al (eds) Una mirada al conocimiento de los ecosistemas de México. Universidad Nacional Autónoma de México, Ciudad de México

    Google Scholar 

  • Arriaga-Jiménez A, Pérez-Díaz C, Pillitteri S (2018) Ka’ux: Mixe language and biodiversity loss in Oaxaca, Mexico. Reg Cohes 8:127–143

    Article  Google Scholar 

  • Ashworth L, Quesada M, Casas A et al (2009) Pollinator-dependent food production in Mexico. Biol Conserv 142:1050–1057

    Article  Google Scholar 

  • Badano EI, Vergara CH (2011) Potential negative effects of exotic honey bees on the diversity of native pollinators and yield of highland coffee plantations. Agric For Entomol 13:365–372

    Article  Google Scholar 

  • Barrera-Bassols N, Toledo VM (2005) Ethnoecology of the Yucatec Maya: symbolism, knowledge and management of natural resources. J Lat Am Geogr 4:9–41

    Article  Google Scholar 

  • Batáry P, Dicks LV, Kleijn D, Sutherland WJ (2015) The role of agri-environment schemes in conservation and environmental management. Biol Conserv 29:1006–1016

    Article  Google Scholar 

  • Benton T, Bieg C, Harwatt H et al (2021) Food system impacts on biodiversity loss. Chatham House, London

    Google Scholar 

  • Blanco CA, Pellegaud JG, Nava-Camberos U et al (2014) Maize pests in Mexico and challenges for the adoption of integrated pest management programs. J Integr Pest Manag 5:E1–E9

    Article  Google Scholar 

  • Bohn JL, Diemont SAW, Gibbs JP et al (2014) Implications of Mayan agroforestry for biodiversity conservation in the Calakmul Biosphere Reserve, Mexico. Agrofor Syst 88:269–285

    Article  Google Scholar 

  • Bonilla-Moheno M, Aide TM (2020) Beyond deforestation: land cover transitions in Mexico. Agric Syst 178:1–7

    Article  Google Scholar 

  • Briggs HM, Perfecto I, Brosi BJ (2013) The role of the agricultural matrix: coffee management and Euglossine Bee (Hymenoptera: Apidae: Euglossini) Communities in Southern Mexico. Environ Entomol 42:1210–1217

    Article  CAS  Google Scholar 

  • Cabrera-Mireles H, Murillo-Cuevas F, Ortega-Zavaleta D et al (2011) Impact of mango manila management systems on arthropods in foliage and weeds. Trop Subtrop Agroecosyst 13:317–326

    Google Scholar 

  • Castro-Luna AA, Galindo-González J (2012) Enriching agroecosystems with fruit-producing tree species favors the abundance and richness of frugivorous and nectarivorous bats in Veracruz, Mexico. Mamm Biol 77:32–40

    Article  Google Scholar 

  • Ceballos G, Ehrlich PR, Raven PH (2020) Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. PNAS 117:13596–13602

    Article  CAS  Google Scholar 

  • Challenger A, Dirzo R (2009) Factores de cambio y estado de la biodiversidad. In: Capital Natural de México, vol. II y tendencias de cambio, 2nd ed. Ciudad de México

    Google Scholar 

  • CONABIO (2009) Cuarto Informe nacional de México al Convenio sobre Diversidad Biológica. Secretaría de Medio Ambiente y Recursos Naturales, Ciudad de México

    Google Scholar 

  • Cortés-Delgado N, Sosa VJ (2014) Do bats roost and forage in shade coffee plantations? A perspective from the frugivorous bat Sturnira hondurensis. Biotropica 46:624–632

    Article  Google Scholar 

  • Crutzen PJ, Stoermer EF (1999) The “Anthropocene” Contribution to the regional data bundle concept: the IGBP-DIS – MEDIAS-France partnership. Global Warm Reader 4:17–18

    Google Scholar 

  • De Jong B, Anaya C, Masera O et al (2010) Greenhouse gas emissions between 1993 and 2002 from land-use change and forestry in Mexico. For Ecol Manag 260:1689–1701

    Article  Google Scholar 

  • Defries RS, Rudel T, Uriarte M, Hansen M (2010) Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat Geosci 3:178–181

    Article  CAS  Google Scholar 

  • Delgado-Carrillo O, Martén-Rodríguez S, Ashworth L et al (2018) Temporal variation in pollination services to Cucurbita moschata is determined by bee gender and diversity. Ecosphere 9:e02506

    Article  Google Scholar 

  • Denzinger A, Schnitzler H-U (2013) Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats. Front Physiol 4:1–15

    Article  Google Scholar 

  • Díaz S, Settele J, Brondízio ES, Ngo HT et al (2019). Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366:eaax3100

    Google Scholar 

  • Dinerstein E, Vynne C, Sala E et al (2019) A global deal for nature: guiding principles, milestones, and targets. Sci Adv 5:1–18

    Article  Google Scholar 

  • Dirzo R, Raven PH (2003) Global state of biodiversity and loss. Annu Rev Environ Resour 28:137–167

    Article  Google Scholar 

  • Dirzo R, Young HS, Galetti M et al (2014) Defaunation in the antropocene. Science 345:401–406

    Article  CAS  Google Scholar 

  • Duru M, Therond O, Martin G et al (2015) How to implement biodiversity-based agriculture to enhance ecosystem services: a review. Agron Sustain Dev 35:1259–1281

    Article  Google Scholar 

  • Dymond K, Celis-Diez JL, Potts SG et al (2021) The role of insect pollinators in avocado production: a global review. J Appl Entomol 145:369–383

    Article  Google Scholar 

  • Estrada A, Coates-Estrada R, Meritt D (1993a) Bat species richness and abundance in tropical rain forest habitats at Los Tuxtlas, Mexico. Ecography 16:309–318

    Article  Google Scholar 

  • Estrada A, Coates-Estrada R, Montiel S, Curiel D (1993b) Patterns of frugivore species richness and abundance in forest islands and in agricultural habitats at Los Tuxtlas, Mexico. Vegetatio 107(108):245–257

    Article  Google Scholar 

  • Estrada A, Coates-Estrada R, Meritt DA (1997) Anthropogenic landscape changes and avian diversity at Los Tuxtlas, Mexico. Biodivers Conserv 6:19–43

    Article  Google Scholar 

  • Estrada A, Coates-Estrada R (2001) Species composition and reproductive phenology of bats in a tropical landscape at Los Tuxtlas, Mexico. J Trop Ecol 17:627–646

    Google Scholar 

  • Estrada A, Coates-Estrada R (2002) Bats in continuous forest, forest fragments and in an agricultural mosaic habitat-island at Los Tuxtlas, Mexico. Biol Cons 103:237–245

    Google Scholar 

  • Estrada CG, Damon A, Hernández CS, et al (2006) Bat diversity in montane rainforest and shaded coffee under different management regimes in southeastern Chiapas, Mexico. Biol Conserv 132:351–361

    Google Scholar 

  • FAO (2020) The state of food and agriculture 2020. Overcoming water challenges in agriculture. FAO, Rome

    Google Scholar 

  • FAO (2021) FAOSTAT. Available via FAOSTAT http://wwwfaoorg/faostat/es/#data. Accessed 15 Jan 2022

  • Figueroa F, Sánchez-Cordero V (2008) Effectiveness of natural protected areas to prevent land use and land cover change in Mexico. Biodivers Conserv 17:3223–3240

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP et al (2005) Global consequences of land use. Science 309:570–574

    Article  CAS  Google Scholar 

  • Gallai N, Salles JM, Settele J, Vaissiére BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68:810–821

    Article  Google Scholar 

  • García-Bañuelos P, Rovito SM, Pineda E (2019) Representation of threatened biodiversity in protected areas and identification of complementary areas for their conservation: plethodontid salamanders in Mexico. Trop Conserv Sci 12:1–15

    Article  Google Scholar 

  • García-Estrada C, Damon A, Hernández CS et al (2006) Bat diversity in montane rainforest and shaded coffee under different management regimes in southeastern Chiapas, Mexico. Biol Conserv 132:351–361

    Article  Google Scholar 

  • Gill JA, Norris K, Potts PM et al (2001) The buffer effect and large-scale population regulation in migratory birds. Nature 412:436–438

    Article  CAS  Google Scholar 

  • Gilroy JJ, Edwards FA, Medina Uribe CA et al (2014) Surrounding habitats mediate the trade-off between land-sharing and land-sparing agriculture in the tropics. J Appl Ecol 51:1337–1346

    Article  Google Scholar 

  • Gómez-Pompa A (1987) On Maya Silviculture. Mex Stud 3:1–17

    Article  Google Scholar 

  • González-Medina JK, Figueroa-Esquivel EM, Puebla-Olivares F (2015) Avifauna de dos zonas cafetaleras en Nayarit, oeste de México. Huitzil 17:18–32

    Google Scholar 

  • Gordon C, Manson R, Sundberg J, Cruz-Angón A (2007) Biodiversity, profitability, and vegetation structure in a Mexican coffee agroecosystem. Agric Ecosyst Environ 118:256–266

    Article  Google Scholar 

  • Guarneros-Zarandona N, Morales-Jiménez J, Cruz-Hernández J et al (2014) Economía familiar e índice de biodiversidad de especies en los traspatios comunitario de Santa María Nepopualco, Puebla. Rev Mex Cienc Agric 5:1701–1712

    Google Scholar 

  • Hansen MC, Potapov PV, Moore R et al (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853

    Article  CAS  Google Scholar 

  • Hernández-Montero JR, Saldaña-Vázquez RA, Galindo-González JR, Sosa VJ (2015) Bat-fruit interactions are more specialized in shaded-coffee plantations than in tropical mountain cloud forest fragments. PLoS One 10:e0126084

    Article  Google Scholar 

  • Hooke RL, Martín-Duque JF, Pedraza J (2012) Land transformation by humans: a review. GSA Today 22:4–10

    Article  Google Scholar 

  • Hooper DU, Adair EC, Cardinale BJ et al (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–108

    Article  CAS  Google Scholar 

  • Hu Q, Xiang M, Chen D et al (2020) Global cropland intensification surpassed expansion between 2000 and 2010: a spatio-temporal analysis based on GlobeLand30. Sci Total Environ 746:1–11

    Article  Google Scholar 

  • Hulme MF, Vickery JA, Green RE et al (2013) Conserving the birds of Uganda’s Banana-coffee arc: land sparing and land sharing compared. PLoS One 8:1–13

    Article  Google Scholar 

  • INEGI (Instituto Nacional de Geografía y Estadística) (2017) Conjunto de datos vectoriales de la carta de uso de suelo y vegetación. Serie VI. Capa Unión. Mapas. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463173359. Accessed 15 Jul 2021

  • Jadhav SB, Sadawarte AK, Bhalkare SK (2008) Evaluation of push-pull technique for the management of Helicoverpa armigera (Hubner) in cotton. Indian J Entomol 70:360–364

    Google Scholar 

  • Janzen DH, Hallwachs W (2019) Perspective: where might be many tropical insects? Biol Conserv 233:102–108

    Article  Google Scholar 

  • Jones G, Jacobs DS, Kunz TH et al (2009) Carpe noctem: the importance of bats as bioindicators. Endanger Species Res 8:93–115

    Article  Google Scholar 

  • Joppa LN, Pfaff A (2011) Global protected area impacts. Proc R Soc B Biol Sci 278:1633–1638

    Article  Google Scholar 

  • Karpinski A, Haenniger S, Schöfl G et al (2014) Host plant specialization in the generalist moth Heliothis virescens and the role of egg imprinting. Evol Ecol 28:1075–1093

    Article  Google Scholar 

  • Kathleen L, Amatangelo KL, Behrensmeyer AK et al (2016) Holocene shifts in the assembly of plant and animal communities implicate human impacts. Nature 529:80–83

    Article  Google Scholar 

  • Kleijn D, Rundlöf M, Scheper J et al (2011) Does conservation on farmland contribute to halting the biodiversity decline? Trends Ecol Evol 26:474–481

    Article  Google Scholar 

  • Klepeis P, Vance C (2003) Neoliberal policy and deforestation in southeastern Mexico: an assessment of the PROCAMPO program. Econ Geogr 79:221–240

    Article  Google Scholar 

  • Koleff P, Soberón J, Arita HT et al (2008) Patrones de diversidad espacial en grupos selectos de especies. In: Capital Natural y Bienestar Social, vol I: Conocimiento de la Biodiversidad. CONABIO, Ciudad de México

    Google Scholar 

  • Kunz TH, de Torrez EB, Bauer D et al (2011) Ecosystem services provided by bats. Ann N Y Acad Sci 1223:1–38

    Article  Google Scholar 

  • Lambert DM, Sullivan P, Claassen R, Foreman L (2007) Profiles of US farm households adopting conservation-compatible practices. Land Use Policy 24:72–88

    Article  Google Scholar 

  • Laurance WF, Carolina Useche D, Rendeiro J et al (2012) Averting biodiversity collapse in tropical forest protected areas. Nature 489:290–294

    Article  CAS  Google Scholar 

  • Le Galliard JF, Fitze PS, Ferrière R, Clobert J (2005) Sex ratio bias, male aggression, and population collapse in lizards. PNAS 102:18231–18236

    Article  Google Scholar 

  • Leff E (2011) Sustentabilidad y racionalidad ambiental: Hacia “otro” programa de sociología ambiental. Rev Mex Sociol 73:5–46

    Google Scholar 

  • MacGregor-Fors I, Schondube JE (2011) Use of tropical dry forests and agricultural areas by neotropical bird communities: birds in modified landscapes. Biotropica 43:365–370

    Article  Google Scholar 

  • Madrid-López SM, Galindo-González J, Castro-Luna AA (2020) Mango orchards and their importance in maintaining phyllostomid bat assemblages in a heterogeneous landscape. Acta Chiropt 21:375–383

    Article  Google Scholar 

  • Marín L, Perfecto I (2013) Spider diversity in coffee agroecosystems: the influence of agricultural intensification and aggressive ants. Environ Entomol 42:204–213

    Article  Google Scholar 

  • Marquez J, Arce-Perez R, Angel Moron M et al (2018) Staphylinid fauna of the soil with different uses in the Santa Marta Volcano, Los Tuxtlas, Veracruz, Mexico. Southwest Entomol 43:965–983

    Article  Google Scholar 

  • Mekonnen MM, Hoekstra AY (2011) The green, blue and grey water footprint of crops and derived crop products. Hydrol Earth Syst Sci 15:1577–1600

    Article  Google Scholar 

  • Mellink E, Riojas-López ME, Giraudoux P (2016) A neglected opportunity for bird conservation: the value of a perennial, semiarid agroecosystem in the Llanos de Ojuelos, central Mexico. J Arid Environ 124:1–9

    Article  Google Scholar 

  • Mellink E, Riojas-López ME, Cárdenas-García M (2017) Biodiversity conservation in an anthropized landscape: trees, not patch size drive, bird community composition in a low-input agro-ecosystem. PLoS One 12:e0179438

    Article  Google Scholar 

  • Melo FPL, Arroyo-Rodríguez V, Fahrig L et al (2013) On the hope for biodiversity-friendly tropical landscapes. Trends Ecol Evol 28:462–468

    Article  Google Scholar 

  • Mendenhall CD, Karp DS, Meyer CFJ et al (2014) Predicting biodiversity change and averting collapse in agricultural landscapes. Nature 509:213–217

    Article  CAS  Google Scholar 

  • Méndez JT, Equihua A (2001) Diversidad y manejo de los termes de México (Hexapoda, Isoptera). Acta Zool Mex NS:173–187

    Google Scholar 

  • Mendoza-Ponce A, Corona-Núñez R, Kraxner F et al (2018) Identifying effects of land use cover changes and climate change on terrestrial ecosystems and carbon stocks in Mexico. Glob Environ Change 53:12–23

    Article  Google Scholar 

  • Mendoza-Ponce AV, Corona-Núñez RO, Kraxner F, Estrada F (2020) Spatial prioritization for biodiversity conservation in a megadiverse country. Anthropocene 32:100267

    Article  Google Scholar 

  • Moguel P, Toledo VM (1999) Biodiversity conservation in traditional coffee systems of Mexico. Conserv Biol 13:11–21

    Article  Google Scholar 

  • Monagan IV, Morris JR, Davis Rabosky AR et al (2017) Anolis lizards as biocontrol agents in mainland and island agroecosystems. Ecol Evol 7:2193–2203

    Article  Google Scholar 

  • Montezano DG, Specht A, Sosa-Gómez DR et al (2018) Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr Entomol 26:286–300

    Article  Google Scholar 

  • Moore JW (2017) The Capitalocene, part I: on the nature and origins of our ecological crisis. J Peasant Stud 44:594–630

    Article  Google Scholar 

  • Moreno-Calles AI, Toledo VM, Casas A (2013) Agroforestry systems of Mexico: a biocultural approach. Bot Sci 91:375–398

    Google Scholar 

  • Moreno-Calles AI, Casas A, Rivero-Romero AD et al (2016) Ethnoagroforestry: integration of biocultural diversity for food sovereignty in Mexico. J Ethnobiol Ethnomed 12:54

    Article  Google Scholar 

  • Morris JR, Vandermeer J, Perfecto I (2015) A keystone ant species provides robust biological control of the coffee berry borer under varying pest densities. PLoS One 10:e0142850–e0142816

    Article  Google Scholar 

  • Naughton-Treves L, Holland MB, Brandon K (2005) The role of protected areas in conserving biodiversity and sustaining local livelihoods. Annu Rev Environ Resour 30:219–252

    Article  Google Scholar 

  • Newbold T, Hudson LN, Hill SLL et al (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50

    Article  CAS  Google Scholar 

  • Numa C, Verdú JR, Sánchez-Palomino P (2005) Phyllostomid bat diversity in a variegated coffee landscape. Biol Conserv 122:151–158

    Article  Google Scholar 

  • Pellegrini P, Fernández RJ (2018) Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. PNAS 115:2335–2340

    Article  CAS  Google Scholar 

  • Perales H, Aguirre JR (2008) Biodiversidad humanizada. In: Ocegueda S, Llorente-Bousquets J (eds) Capital natural de México, vol. I: Conocimiento actual de la biodiversidad. CONABIO, Ciudad de México

    Google Scholar 

  • Perfecto I, Vandermeer J (2008) Biodiversity conservation in tropical agroecosystems: a new conservation paradigm. Ann N Y Acad Sci 1134:173–200

    Article  Google Scholar 

  • Perfecto I, Vandermeer J (2015) Perspectives in plant ecology, evolution and systematics structural constraints on novel ecosystems in agriculture: the rapid emergence of stereotypic modules. Perspect Plant Ecol Evol Syst 17:522–530

    Article  Google Scholar 

  • Perfecto I, Mas A, Dietsch T et al (2003) Conservation of biodiversity in coffee agroecosystems: a tri-taxa comparison in southern Mexico. Biodivers Conserv 12:1239–1252

    Article  Google Scholar 

  • Perfecto I, Vandermeer JH, Bautista GL et al (2004) Greater predation in shaded coffee farms: the role of resident Neotropical birds. Ecology 85:2677–2681

    Article  Google Scholar 

  • Phalan B, Balmford A, Green RE, Scharlemann JPW (2011) Minimising the harm to biodiversity of producing more food globally. Food Policy 36:S62–S71

    Article  Google Scholar 

  • Phelps J, Carrasco LR, Webb EL et al (2013) Agricultural intensification escalates future conservation costs. PNAS 110:7601–7606

    Article  CAS  Google Scholar 

  • Philpott SM, Bichier P (2012) Effects of shade tree removal on birds in coffee agroecosystems in Chiapas, Mexico. Agric Ecosyst Environ 149:171–180

    Article  Google Scholar 

  • Pineda E, Moreno C, Escobar F et al (2005) Frog, bat, and dung beetle diversity in the cloud forest and coffee agroecosystems of Veracruz, Mexico. Conserv Biol 19:400–410

    Article  Google Scholar 

  • Pongratz J, Reick C, Raddatz T et al (2008) A reconstruction of global agricultural areas and land cover for the last millennium. Glob Biogeochem Cycles 22:1–16

    Article  Google Scholar 

  • Racey PR, Swift SM, Rydell J et al (1998) Bats and insects over two Scottish rivers with contrasting nitrate status. Anim Conserv 1:195–202

    Article  Google Scholar 

  • Ramírez-Albores JE (2010) Diversidad de aves de hábitats naturales y modificados en un paisaje de la Depresión Central de Chiapas, México. Rev Biol Trop 58:511–528

    Google Scholar 

  • Ramírez-Albores JE (2013) Riqueza y diversidad de aves de un área de la Faja Volcánica Transmexicana, Tlaxcala, México. Acta Zoológica Mexicana 29:486–512

    Google Scholar 

  • Rodrigues ASL, da Onseca GAB, Gaston KJ et al (2004) Effectiveness of the global protected area network in representing species diversity. Nature 428:640–643

    Article  CAS  Google Scholar 

  • Russ JM, Montgomery WI (2002) Habitat associations of bats in Northern Ireland: implications for conservation. Biol Conserv 108:49–58

    Article  Google Scholar 

  • Saldaña-Vázquez RA, Sosa VJ, Hernández-Montero JR et al (2010) Abundance responses of frugivorous bats (Stenodermatinae) to coffee cultivation and selective logging practices in mountainous central Veracruz, Mexico. Biodivers Conserv 19:2111–2124

    Article  Google Scholar 

  • Saldaña-Vázquez RA, Castro-Luna AA, Sandoval-Ruiz CA et al (2013) Population composition and ectoparasite prevalence on bats (Sturnira Ludovici; Phyllostomidae) in forest fragments and coffee plantations of Central Veracruz, Mexico. Biotropica 45:351–356

    Article  Google Scholar 

  • Sánchez-Bayo F, Wyckhuys KAG (2019) Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv 232:8–27

    Article  Google Scholar 

  • Sánchez-Cordero V, Illoldi-Rangel P, Linaje M et al (2005) Deforestation and extant distributions of Mexican endemic mammals. Biol Conserv 126:465–473

    Article  Google Scholar 

  • Sánchez-Cordero V, Botello F, Flores-Martínez JJ et al (2014) Biodiversity of Chordata (Mammalia) in Mexico. Rev Mex Biodivers 85:496–504

    Article  Google Scholar 

  • Şekercioglu Ç, Loarie SR, Oviedo Brenes F et al (2007) Persistence of forest birds in the Costa Rican agricultural countryside. Conserv Biol 21:482–494

    Article  Google Scholar 

  • Şekercioglu ÇH, Mendenhall CD, Oviedo-Brenes F et al (2019) Long-term declines in bird populations in tropical agricultural countryside. PNAS 116:9903–9912

    Article  Google Scholar 

  • Shi JJ, Rabosky DL (2015) Speciation dynamics during the global radiation of extant bats. Evolution 69:1528–1545

    Google Scholar 

  • Smith BD (2001) The transition to food production. In: Feinman GM, Douglas TP (eds) Archaeology at the millennium. Springer, Boston, pp 199–229

    Chapter  Google Scholar 

  • Smith BD (2006) Eastern North America as an independent center of plant domestication. PNAS 103:12223–12228

    Article  CAS  Google Scholar 

  • Somarriba E, Harvey CA, Samper M et al (2004) Biodiversity conservation in Neotropical coffee (Coffea arabica) plantations. In: Schroth G, da Fonseca GAB, Harvey CA et al (eds) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington DC

    Google Scholar 

  • Sosa-Aranda I, Del-Val E, Hernández-Martínez G et al (2018) Response of lepidopteran herbivore communities to crop management in coffee plantations. Agric Ecosyst Environ 265:37–44

    Article  Google Scholar 

  • Stanton RL, Morrissey CA, Clark RG (2018) Analysis of trends and agricultural drivers of farmland bird declines in North America: a review. Agric Ecosyst Environ 254:244–254

    Article  Google Scholar 

  • Steffen W, Broadgate W, Deutsch L et al (2015) The trajectory of the anthropocene: the great acceleration. Anthropocene Rev 2:81–98

    Article  Google Scholar 

  • Stork NE (2018) How many species of insects and other terrestrial arthropods are there on earth? Annu Rev Entomol 63:31–45

    Article  CAS  Google Scholar 

  • Swift MJ, Izac AN, Noordwijk MV (2004) Biodiversity and ecosystem services in agricultural landscapes — are we asking the right questions? Agric Ecosyst Environ 104:113–134

    Article  Google Scholar 

  • Tejeda-Cruz C, Gordon C (2008) Aves. In: Manson RH, Hernández V, Gallina S et al (eds) Agroecosistemas cafeteleros de Veracruz: biodiversidad, manejo y conservación. INE-INECOL, Ciudad de México

    Google Scholar 

  • Tejeda-Cruz C, Sutherland WJ (2004) Bird responses to shade coffee production. Anim Conserv 7:169–179

    Article  Google Scholar 

  • Tinajero R, Barragán F, Chapa-Vargas L (2017) Raptor functional diversity in scrubland-agricultural landscapes of Northern-Central-Mexican Dryland environments. Trop Conserv Sci 10:194008291771242

    Article  Google Scholar 

  • Toledo V, Barrera-Bassols N, Boege E (2019) ¿Qué es la Diversidad Biocultural? UNAM- CONACYT, Morelia, Michoacán

    Google Scholar 

  • Torres-Jiménez MG, Murrieta-Galindo R, Bolívar-Cimé B et al (2020) Coffee farmers’ perception of bat guano as fertilizer in agroecosystems of Mexico. Reg Cohes 10:22–35

    Article  Google Scholar 

  • Trejo-Salazar RE, Eguiarte LE, Suro-Piñera D et al (2016) Save our bats, save our Tequila: industry and science join forces to help bats and Agaves. Nat Areas J 36:523–530

    Article  Google Scholar 

  • Tremlett CJ, Moore M, Chapman MA et al (2020) Pollination by bats enhances both quality and yield of a major cash crop in Mexico. J Appl Ecol 57:450–459

    Article  CAS  Google Scholar 

  • Tscharntke T, Klein AM, Kruess A et al (2005) Landscape perspectives on agricultural intensification and biodiversity on ecosystem service management. Ecol Lett 8:857–874

    Article  Google Scholar 

  • Tscharntke T, Sekercioglu CH, Dietsch TV et al (2008) Landscape constraints on functional diversity of birds and insects in tropical agroecosystems. Ecology 89:944–951

    Article  Google Scholar 

  • Tubiello FN, Salvatore M, Ferrara AF et al (2015) The contribution of agriculture, forestry and other land use activities to global warming, 1990-2012. Glob Chang Biol 21:2655–2660

    Article  Google Scholar 

  • Turner BL, Kasperson RE, Meyer WB et al (1990) Two types of global environmental change. Definitional and spatial-scale issues in their human dimensions. Glob Environ Change 1:14–22

    Article  Google Scholar 

  • Van Der Wal H, Peña-Álvarez B, Arriaga-Weiss SL et al (2012) Species, functional groups, and habitat preferences of birds in five agroforestry classes in Tabasco, Mexico. Wilson J Ornithol 124:558–571

    Article  Google Scholar 

  • Vandermeer J, Perfecto I (2007) The agricultural matrix and a future paradigm for conservation. Conserv Biol 21:274–277

    Article  Google Scholar 

  • Visconti P, Butchart S, Brooks T et al (2019) Protected area targets post-2020. Science 364:239–241

    Article  CAS  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J et al (1997) Human domination of Earth’s ecosystems. Science 277:494–499

    Article  CAS  Google Scholar 

  • Wagner DL, Grames EM, Forister ML et al (2021) Insect decline in the Anthropocene: death by a thousand cuts. PNAS 118:1–10

    Article  Google Scholar 

  • Waters CN, Zalasiewicz J, Summerhayes C et al (2016) The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351:aad2622

    Article  Google Scholar 

  • Watson JEM, Dudley N, Segan DB et al (2014) The performance and potential of protected areas. Nature 515:67–73

    Article  CAS  Google Scholar 

  • Whelan CJ, Şekercioğlu ÇH, Wenny DG (2015) Why birds matter: from economic ornithology to ecosystem services. J Ornithol 156:227–238

    Article  Google Scholar 

  • Wickramasinghe LP, Harris S, Jones G et al (2003) Bat activity and species richness on organic and conventional farms: impact of agricultural intensification. J Appl Ecol 40:984–993

    Article  Google Scholar 

  • Wickramasinghe LP, Harris S, Jones G et al (2004) Abundance and species richness of nocturnal insects on organic and conventional farms: effects of agricultural intensification on bat foraging. Conserv Biol 18:1283–1292

    Article  Google Scholar 

  • Williams DR, Alvarado F, Green RE et al (2017) Land-use strategies to balance livestock production, biodiversity conservation and carbon storage in Yucatán, Mexico. Glob Chang Biol 23:5260–5272

    Article  Google Scholar 

  • Williams-Guillén K, Perfecto I (2010) Effects of agricultural intensification on the assemblage of leaf-nosed bats (Phyllostomidae) in a coffee landscape in Chiapas, Mexico. Biotropica 42:605–613

    Article  Google Scholar 

  • Williams-Guillén K, Perfecto I (2011) Ensemble composition and activity levels of insectivorous bats in response to management intensification in coffee agroforestry systems. PLoS One 6:e16502

    Article  Google Scholar 

  • Williams-Guillén K, Perfecto I, Vandermeer J (2008) Bats limit insects in a Neotropical agroforestry system. Science 320:70

    Article  Google Scholar 

  • Wilson DE, Mittermeier RA (chief editors) Handbook of the Mammals of the World, Vol. 9. Bats (2019) 1st edition. Lynx Edicions, Barcelona

    Google Scholar 

  • Zamora-Gutierrez V, Pearson RG, Green RE et al (2018) Forecasting the combined effects of climate and land use change on Mexican bats. Divers Distrib 24:363–374

    Article  Google Scholar 

  • Zhang WJ, Jiang FB, Ou JF (2011) Global pesticide consumption and pollution: with China as a focus. Proc Int Acad Ecol Environ Sci 1:125–144

    CAS  Google Scholar 

  • Zuria I, Gates JE (2012) Community composition, species richness, and abundance of birds in field margins of central Mexico: local and landscape-scale effects. Agrofor Syst 87:377–393

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Natalia Mesa-Sierra for making Fig. 16.1, and Jorge D. Carballo-Morales for made Fig. 16.2.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Escobar-Ibáñez, J.F., Hernández-Cumplido, J., Rodríguez, W.D., Saldaña-Vázquez, R.A., Zamora-Gutierrez, V. (2023). Mexican Fauna in Agroecosystems: Challenges, Opportunities and Future Directions. In: Jones, R.W., Ornelas-García, C.P., Pineda-López, R., Álvarez, F. (eds) Mexican Fauna in the Anthropocene. Springer, Cham. https://doi.org/10.1007/978-3-031-17277-9_16

Download citation

Publish with us

Policies and ethics