Skip to main content

Strategies to Control Hemorrhage in the Trauma Patient

  • Chapter
  • First Online:
The High-risk Surgical Patient
  • 1432 Accesses

Abstract

Traumatic hemorrhage is one of the leading causes of death. Additionally, hemorrhage is also a leading cause of preventable traumatic deaths. Trauma causes a significant healthcare financial burden and any effort to decrease traumatic mortality is a worthy cause. Improving outcomes in traumatic hemorrhage have proven to be extremely complex and multifaceted endeavor. Protocols, pharmaceutical adjuncts, surgical techniques, and management strategies have all been extensively researched in the realm of traumatic hemorrhage control.

The most important aspect of traumatic hemorrhage control is the time to definitive control. Regardless of the therapy initiated, mortality improves when bleeding stops sooner. Thus, the most beneficial strategies should be designed around controlling the hemorrhage as early as possible. Ongoing bleeding is associated with both increased morbidity and mortality in the trauma population. In order to achieve early hemorrhage control, point-of-care strategies, prehospital resuscitation, early definitive interventions, and quick surgical techniques should be employed. Prehospital evaluation and early intervention are necessary to promote the best chance of survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morbidity and Mortality Weekly Report (MMWR). CDC National Health Report: leading causes of morbidity and mortality and associated behavioral risk and protective factors—United States, 2005–2013; 2014.

    Google Scholar 

  2. National Academies of Sciences [NAS]. A national trauma care system: Integrating military and civilian trauma systems to achieve zero preventable deaths after injury; 2016. Available at: http://www.nationalacademies.org/hmd/Reports/2016/A-National-Trauma-Care-System-Integrating-Militaryand-Civilian-Trauma-Systems.aspx.

  3. Sauaia A, Moore FA, Moore EE, Moser KS, et al. Epidemiology of trauma deaths: a reassessment. J Trauma. 1995;38(2):185–93.

    CAS  PubMed  Google Scholar 

  4. Harvin JA, Maxim T, Inaba K, Martinez-Aguilar MA, et al. Mortality after emergent trauma laparotomy: a multicenter, retrospective study. J Trauma Acute Care Surg. 2017;83(3):464–8.

    PubMed  PubMed Central  Google Scholar 

  5. Kotwal RS, Montgomery HR, Kotwal BM, Champion HR, et al. Eliminating preventable death on the battlefield. Arch Surg. 2011;146(12):1350–8.

    PubMed  Google Scholar 

  6. Kauvar DS, Lefering R, Wade CE. Impact of hemorrhage on trauma outcome: an overview of epidemiology, clinical presentations, and therapeutic considerations. J Trauma Acute Care Surg. 2006;60(Suppl 6):S3–S11.

    Google Scholar 

  7. Drake SA, Holcomb JB, Yang Y, Thetford C, et al. Establishing a regional trauma preventable/potentially preventable death rate. Ann Surg 2018 Jul.

    Google Scholar 

  8. Drake SA, Wolf DA, Meininger JC, Cron SG, et al. Methodology to reliably measure preventable trauma death rate. Trauma Surg Acute Care Open. 2017;2(1):e000106.

    PubMed  PubMed Central  Google Scholar 

  9. Qasim Z, Butler FK, Holcomb JB, Kotora JG, et al. Selective prehospital advanced resuscitative care-developing a strategy to prevent prehospital deaths from noncompressible torso hemorrhage. Shock. 2021; (published ahead of print)

    Google Scholar 

  10. Lanzarotti S, Cook CS, Porter JM, Judkins DG, Williams MD. The cost of trauma. American Surg. 2003;69(9):766.

    Google Scholar 

  11. Cowley RA. A total emergency medical system for the State of Maryland. Md State Med J. 1975;24(7):37–45.

    CAS  PubMed  Google Scholar 

  12. Rogers FB, Rittenhouse KJ, Gross BW. The golden hour in trauma: Dogma or medical folklore? Injury. 2015;46(4):525–7.

    PubMed  Google Scholar 

  13. Kotwal RS, Howard JT, Orman JA, Tarpey BW, et al. The effect of a golden hour policy on the morbidity and mortality of combat casualties. JAMA Surg. 2016;151(1):15–24.

    PubMed  Google Scholar 

  14. Holcomb JB. Transport time and preoperating room hemostatic interventions are important: improving outcomes after severe truncal injury. Crit Care Med. 2018;46:447–53.

    PubMed  Google Scholar 

  15. Remick KN, Schwab CW, Smith BP, Monshizadeh A, et al. Defining the optimal time to the operating room may salvage early trauma deaths. J Trauma Acute Care Surg. 2014;76(5):1251–8.

    PubMed  Google Scholar 

  16. Alarhayem AQ, Myers JG, Dent D, Liao L, et al. Time is the enemy: mortality in trauma patients with hemorrhage from torso injury occurs long before the “golden hour”. Am J Surg. 2016;212(6):1101–5.

    CAS  PubMed  Google Scholar 

  17. Holcomb JB, del Junco DJ, Fox EE, Wade CE, et al. The prospective, observational, multicenter, major trauma transfusion (PROMMTT) study: comparative effectiveness of a time-varying treatment with competing risks. JAMA Surg. 2013;148:127–36.

    PubMed  PubMed Central  Google Scholar 

  18. Holcomb JB, Tilley BC, Baraniuk S, Fox EE, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015;313:471–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Clarke JR, Trooskin SZ, Doshi PJ, Greenwald L, Mode CJ. Time to laparotomy for intra-abdominal bleeding from trauma does affect survival for delays up to 90 minutes. J Trauma. 2002;52(3):420–5.

    PubMed  Google Scholar 

  20. Meizoso JP, Ray JJ, Karcutskie CA, Allen CJ, et al. Effect of time to operation on mortality for hypotensive patients with gunshot wounds to the torso: the golden 10 minutes. J Trauma Acute Care Surg. 2016;81(4):685–91.

    PubMed  Google Scholar 

  21. Schwartz DA, Medina M, Cotton BA, Rahbar E, et al. Are we delivering two standards of care for pelvic trauma? Availability of angioembolization after hours and on weekends increases time to therapeutic intervention. J Trauma Acute Care Surg. 2014;76(1):134–9.

    PubMed  Google Scholar 

  22. Radwan ZA, Bai Y, Matijevic N, del Junco DJ, et al. An emergency department thawed plasma protocol for severely injured patients. JAMA Surg. 2013;148(2):170–5.

    PubMed  PubMed Central  Google Scholar 

  23. Cannon JW, Khan MA, Raja AS, Cohen MJ, et al. Damage control resuscitation in patients with severe traumatic hemorrhage: a practice management guideline from the Eastern Association for the Surgery of Trauma. J Trauma Acute Care Surg. 2017;82(3):605–17.

    PubMed  Google Scholar 

  24. Chang R, Kerby JD, Kalkwarf KJ, Van Belle G, et al. Earlier time to hemostasis is associated with decreased mortality and rate of complications: results from the Pragmatic Randomized Optimal Platelet and Plasma Ratio (PROPPR) trial. J Trauma Acute Care Surg. 2019;87(2):342.

    PubMed  PubMed Central  Google Scholar 

  25. Oyeniyi BT, Fox EE, Scerbo M, Tomasek JS, et al. Trends in 1029 trauma deaths at a level 1 trauma center: impact of a bleeding control bundle of care. Injury. 2017;48(1):5–12.

    PubMed  Google Scholar 

  26. Cosgriff N, Moore EE, Sauaia A, Kenny-Moynihan M, et al. Predicting life-threatening coagulopathy in the massively transfused trauma patient: hypothermia and acidoses revisited. J Trauma. 1997;42:857–61.

    CAS  PubMed  Google Scholar 

  27. Kashuk JL, Moore EE, Millikan JS, Moore JB. Major abdominal vascular trauma—a unified approach. J Trauma. 1982;22:672–9.

    CAS  PubMed  Google Scholar 

  28. Black JA, Pierce VS, Juneja K, Holcomb JB. Complications of hemorrhagic shock and massive transfusion—a comparison before and after the damage control resuscitation era. Shock. 2021;56(1):42–51.

    PubMed  Google Scholar 

  29. Jacobs LM, Warshaw AL, Burns KJ. Empowering the public to improve survival in mass casualty events. Ann Surg. 2016;263:860–1.

    PubMed  Google Scholar 

  30. Jacobs LM. The Hartford Consensus IV: a call for increased national resilience. Bull Amer Coll Surg. 2016;191:17–24.

    Google Scholar 

  31. Knudson MM, Velmahos G, Cooper ZR. Response to mass casualty events: from the battlefield to the Stop the Bleed campaign. Trauma Surg Acute Care Open. 2016;1(1):e000023.

    PubMed  PubMed Central  Google Scholar 

  32. Department of Homeland Security. Stop the Bleed. Available at: http://www.dhs.gov/stopthebleed. Accessed July 6, 2021.

  33. Bellamy RF. The causes of death in conventional land warfare: implications for combat casualty care research. Mil Med. 1984;149:55–62.

    CAS  PubMed  Google Scholar 

  34. Holcomb JB, McMullin NR, Pearse L, et al. Causes of death in U.S. Special Operations Forces in the global war on terrorism: 2001–2004. Ann Surg. 2007;245:986–91.

    PubMed  PubMed Central  Google Scholar 

  35. Navein J, Coupland R, Dunn R. The tourniquet controversy. J Trauma. 2003;54(5 Suppl):S219–20.

    PubMed  Google Scholar 

  36. Welling DR, Burris DG, Hutton JE, Minken SL, Rich NM. A balanced approach to tourniquet use: lessons learned and relearned. J Am Coll Surg. 2006;203:106–15.

    PubMed  Google Scholar 

  37. Husum H, Gilbert M, Wisborg T, Pillgram-Larsen J. Prehospital tourniquets: there should be no controversy. J Trauma. 2004;56:214–5.

    PubMed  Google Scholar 

  38. Kragh JF Jr, Baer DG, Walters TJ. Extended (16-hour) tourniquet application after combat wounds: a case report and review of the current literature. J Orthop Trauma. 2007;21:274–8.

    PubMed  Google Scholar 

  39. Kragh JF Jr, Walters TJ, Baer DG, Fox CJ, et al. Practical use of emergency tourniquets to stop bleeding in major limb trauma. J Trauma Acute Care Surg. 2008;64(2):S38–50.

    Google Scholar 

  40. Kotwal RS, Butler FK Jr. Junctional hemorrhage control for tactical combat casualty care. Wilderness Environ Med. 2017;28:S33–8.

    PubMed  Google Scholar 

  41. Food and Drug Administration, Department of Health and Human Services. U.S. FDA 510(k) Number: K130482; device name: Combat Ready Clamp (CRoC). Letter to Combat Medical Systems dated 29 April 2013.

    Google Scholar 

  42. Kragh JF Jr, Murphy C, Steinbaugh J, Dubick MA, et al. Prehospital emergency inguinal clamp controls hemorrhage in cadaver model. Mil Med. 2013;178(7):799–805.

    PubMed  Google Scholar 

  43. Food and Drug Administration, Department of Health and Human Services. US FDA 510(k) number: K131561; device name: SAM Junctional Tourniquet (SJT). Letter to SAM Medical Products dated 24 July 2013.

    Google Scholar 

  44. Drew B, Montgomery HR, Butler FK Jr. Tactical Combat Casualty Care (TCCC) guidelines for medical personnel: 05 November 2020. J Spec Oper Med. 2020;20(4):144–51.

    PubMed  Google Scholar 

  45. Kragh JF, Mann-Salinas EA, Kotwal RS, Gross KR, et al. Laboratory assessment of out-of-hospital interventions to control junctional bleeding from the groin in a manikin model. Am J Emerg Med. 2013;31(8):1276–8.

    PubMed  Google Scholar 

  46. Taylor DM, Coleman M, Parker PJ. The evaluation of an abdominal aortic tourniquet for the control of pelvic and lower limb hemorrhage. Mil Med. 2013;178(11):1196–201.

    PubMed  Google Scholar 

  47. Lyon M, Johnson D, Gordon R. Use of a novel abdominal aortic and junctional tourniquet to reduce or eliminate flow in the brachial and popliteal arteries in human subjects. Prehosp Emerg Care. 2015;19:405–8.

    PubMed  Google Scholar 

  48. Howard TC, Kelley RR. The effect of bone wax on the healing of experimental rat tibial lesions. Clin Orthop Relat Res. 1969;63:226–32.

    CAS  PubMed  Google Scholar 

  49. Sudmann B, Bang G, Sudmann E. Histologically verified bone wax (beeswax) granuloma after median sternotomy in 17 of 18 autopsy cases. Pathology. 2006;38:138–41.

    PubMed  Google Scholar 

  50. Johnson P, Fromm D. Effects of bone wax on bacterial clearance. Surgery. 1981;89:206–9.

    CAS  PubMed  Google Scholar 

  51. Wang MY, Armstrong JK, Fisher TC, Meiselman HJ, et al. A new, pluronic-based, bone hemostatic agent that does not impair osteogenesis. Neurosurgery. 2001;49(4):962–8.

    CAS  PubMed  Google Scholar 

  52. Wellisz T, Armstrong JK, Cambridge J, An YH, et al. The effects of a soluble polymer and bone wax on sternal healing in an animal model. Ann Thorac Surg. 2008;85(5):1776–80.

    PubMed  Google Scholar 

  53. Wellisz T, An YH, Wen X, Kang Q, et al. Infection rates and healing using bone wax and a soluble polymer material. Clin Orthop Relat Res. 2008;466(2):481–6.

    PubMed  PubMed Central  Google Scholar 

  54. Achneck HE, Sileshi B, Jamiolkowski RM, Albala DM, et al. A comprehensive review of topical hemostatic agents: efficacy and recommendations for use. Ann Surg. 2010;251(2):217–28.

    PubMed  Google Scholar 

  55. Schonauer C, Tessitore E, Moraci A, Barbagallo G, Albanese V. The use of local agents: bone wax, gelatin, collagen, oxidized cellulose. Eur Spine J. 2004;13(suppl 1):S89–96.

    PubMed  PubMed Central  Google Scholar 

  56. Wilkinson HA, Baker S, Rosenfeld S. Gelfoam paste in experimental laminectomy and cranial trephination: hemostasis and bone healing. J Neurosurg. 1981;54:664–7.

    CAS  PubMed  Google Scholar 

  57. Wagner WR, Pachence JM, Ristich J, Johnson PC. Comparative in vitro analysis of topical hemostatic agents. J Surg Res. 1996;66(2):100–8.

    CAS  PubMed  Google Scholar 

  58. Abbott WM, Austen WG. The effectiveness and mechanism of collagen induced topical hemostasis. Surgery. 1975;78:723–9.

    CAS  PubMed  Google Scholar 

  59. Rousou J, Levitsky S, Gonzalez-Lavin L, Cosgrove D, et al. Randomized clinical trial of fibrin sealant in patients undergoing resternotomy or reoperation after cardiac operations: a multicenter study. J Thorac Cardiovasc Surg. 1989;97(2):194–203.

    CAS  PubMed  Google Scholar 

  60. Larson MJ, Bowersox JC, Lim RC, Hess JR. Efficacy of a fibrin hemostatic bandage in controlling hemorrhage from experimental arterial injuries. Arch Surg. 1995;130(4):420–2.

    CAS  PubMed  Google Scholar 

  61. Holcomb J, MacPhee M, Hetz S, Harris R, et al. Efficacy of a dry fibrin sealant dressing for hemorrhage control after ballistic injury. Arch Surg. 1998;133(1):32–5.

    CAS  PubMed  Google Scholar 

  62. Pusateri AE, Modrow HE, Harris RA, Holcomb JB, et al. Advanced hemostatic dressing development program: animal model selection criteria and results of a study of nine hemostatic dressings in a model of severe large venous hemorrhage and hepatic injury in swine. J Trauma Acute Care Surg. 2003;55(3):518–26.

    CAS  Google Scholar 

  63. Holcomb JB, Pusateri AE, Harris RA, Charles NC, et al. Effect of dry fibrin sealant dressings versus gauze packing on blood loss in grade V liver injuries in resuscitated swine. J Trauma Acute Care Surg. 1999;46(1):49–57.

    CAS  Google Scholar 

  64. Holcomb JB, Pusateri AE, Harris RA, Reid TJ, et al. Dry fibrin sealant dressings reduce blood loss, resuscitation volume, and improve survival in hypothermic coagulopathic swine with grade V liver injuries. J Trauma Acute Care Surg. 1999;47(2):233–42.

    CAS  Google Scholar 

  65. Pusateri AE, Holcomb JB, Harris RA, MacPhee MJ, et al. Effect of fibrin bandage fibrinogen concentration on blood loss after grade V liver injury in swine. Mil Med. 2001;166(3):217–22.

    CAS  PubMed  Google Scholar 

  66. Kheirabadi BS, Acheson EM, Deguzman R, Sondeen JL, et al. Hemostatic efficacy of two advanced dressings in an aortic hemorrhage model in swine. J Trauma Acute Care Surg. 2005;59(1):25–35.

    Google Scholar 

  67. Moainie S, Chen E, Al-Attar N, et al. A phase III, randomized, controlled superiority trial evaluating EVARREST® Fibrin Sealant Patch versus Tachosil Fibrin Sealant Patch in controlling bleeding in aortic reconstruction surgery. Abstract presented at The Houston Aortic Symposium; March 3–5, 2016.

    Google Scholar 

  68. Fischer CP, Bochicchio G, Shen J, Patel B, et al. A prospective, randomized, controlled trial of the efficacy and safety of fibrin pad as an adjunct to control soft tissue bleeding during abdominal, retroperitoneal, pelvic, and thoracic surgery. J Am Coll Surg. 2013;217(3):385–93.

    PubMed  Google Scholar 

  69. Koea JB, Batiller J, Patel B, et al. A phase III, randomized, controlled, superiority trial evaluating the fibrin pad versus standard of care in controlling parenchymal bleeding during elective hepatic surgery. HPB (Oxford). 2013;15(1):61–70.

    PubMed  Google Scholar 

  70. Tsai GJ, Su WH. Antibacterial activity of shrimp chitosan against Escherichia coli. J Food Prot. 1999;62:239–43.

    CAS  PubMed  Google Scholar 

  71. Wedmore I, McManus JG, Pusateri AE, Holcomb JB. A special report on the chitosan-based hemostatic dressing: experience in current combat operations. J Trauma. 2006;60:655–8.

    PubMed  Google Scholar 

  72. van Oostendorp SE, Tan EC, Geeraedts LM. Prehospital control of life-threatening truncal and junctional haemorrhage is the ultimate challenge in optimizing trauma care; a review of treatment options and their applicability in the civilian trauma setting. Scand J Trauma Resusc Emerg Med. 2016;24(1):1–13.

    Google Scholar 

  73. Cox JM, Rall JM. Evaluation of XSTAT® and QuickClot® Combat Gauze® in a Swine model of lethal junctional hemorrhage in coagulopathic swine. J Spec Oper Med. 2017;17(3):64–7.

    PubMed  Google Scholar 

  74. Sims K, Montgomery HR, Dituro P, Kheirabadi BS, Butler FK. Management of external hemorrhage in tactical combat casualty care: the adjunctive use of XStat™ compressed hemostatic sponges: TCCC guidelines change 15-03. J Spec Oper Med. 2016;16(1):19–28.

    PubMed  Google Scholar 

  75. Alam HB, Burris D, DaCorta JA, Rhee P. Hemorrhage control in the battlefield: role of new hemostatic agents. Mil Med. 2005;170:63–9.

    PubMed  Google Scholar 

  76. Alam HB, Uy GB, Miller D, et al. Comparative analysis of hemostatic agents in a swine model of lethal groin injury. J Trauma. 2003;54:1077–82.

    PubMed  Google Scholar 

  77. Alam HB, Chen Z, Jaskille A, et al. Application of a zeolite hemostatic agent achieves 100% survival in a lethal model of complex groin injury in Swine. J Trauma. 2004;56:974–83.

    CAS  PubMed  Google Scholar 

  78. Pusateri AE, Delgado AV, Dick EJ Jr, et al. Application of a granular mineral-based hemostatic agent (QuikClot) to reduce blood loss after grade V liver injury in swine. J Trauma. 2004;57:555–62.

    PubMed  Google Scholar 

  79. Acheson EM, Kheirabadi BS, Deguzman R, Dick EJ Jr, Holcomb JB. Comparison of hemorrhage control agents applied to lethal extremity arterial hemorrhage in swine. J Trauma. 2005;59:865–74.

    PubMed  Google Scholar 

  80. Pusateri AE, Holcomb JB, Kheirabadi BS, Alam HB, et al. Making sense of the preclinical literature on advanced hemostatic products. J Trauma. 2006;60(3):674–82.

    PubMed  Google Scholar 

  81. Kheirabadi BS, Scherer MR, Estep JS, Dubick MA, Holcomb JB. Determination of efficacy of new hemostatic dressings in a model of extremity arterial hemorrhage in swine. J Trauma. 2009;67:450–459; discussion 459–460.

    Google Scholar 

  82. Littlejohn LF, Devlin JJ, Kircher SS, Lueken R, et al. Comparison of Celox-A, ChitoFlex, WoundStat, and combat gauze hemostatic agents versus standard gauze dressing in control of hemorrhage in a swine model of penetrating trauma. Acad Emerg Med. 2011;18:340–50.

    PubMed  Google Scholar 

  83. Rall JM, Cox JM, Songer AG, Cestero RF, Ross JD. Comparison of novel hemostatic dressings with QuikClot combat gauze in a standardized swine model of uncontrolled hemorrhage. J Trauma Acute Care Surg. 2013;75(2):S150–6.

    CAS  PubMed  Google Scholar 

  84. Black JA, Pierce VS, Kerby JD, Holcomb JB. The evolution of blood transfusion in the trauma patient: whole blood has come full circle. Semin Thromb Hemostasis. 2020;46(2):215–20.

    Google Scholar 

  85. Repine TB, Perkins JB, Kauvar DS, Blackborne L. The use of fresh whole blood in massive transfusion. J Trauma. 2006;60(Suppl. 6):S59–69.

    PubMed  Google Scholar 

  86. Borgman MA, Spinella PC, Perksins JG, et al. The ratio of blood products transfused affects mortality in patients receiving massive transfusions at a combat support hospital. J Trauma. 2007;63(4):805–13.

    PubMed  Google Scholar 

  87. Holcomb JB, Jenkins D, Rhee P, et al. Damage control resuscitation: directly addressing the early coagulopathy of trauma. J Trauma. 2007;62(2):307–10.

    PubMed  Google Scholar 

  88. Hashmi ZG, Chehab M, Nathens AB, Joseph B, et al. Whole truths but half the blood: addressing the gap between the evidence and practice of pre-hospital and in-hospital blood product use for trauma resuscitation. Transfusion. 2021;61:S348–53.

    PubMed  Google Scholar 

  89. Spinella PC, Perkins JG, Grathwohl KW, Beekley AC, Holcomb JB. Warm fresh whole blood is independently associated with improved survival for patients with combat-related traumatic injuries. J Trauma. 2009;66(Suppl. 4):S69–76.

    PubMed  PubMed Central  Google Scholar 

  90. Cotton BA, Podbielski J, Camp E, Early Whole Blood Investigators, et al. A randomized controlled pilot trial of modified whole blood versus component therapy in severely injured patients requiring large volume transfusions. Ann Surg. 2013;258(04):527–32. discussion 532–533

    PubMed  Google Scholar 

  91. Seheult JN, Anto V, Alarcon LH, Sperry JL, et al. Clinical outcomes among low-titer group O whole blood recipients compared to recipients of conventional components in civilian trauma resuscitation. Transfusion. 2018;58(08):1838–45.

    PubMed  Google Scholar 

  92. Olldashi F, Kerçi M, Zhurda T, Ruçi K, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376(9734):23–32.

    PubMed  Google Scholar 

  93. CRASH-2 Trial Collaborators. The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomized, controlled trial. Lancet. 2011;377:1096–101.

    Google Scholar 

  94. Morrison JJ, Dubose JJ, Rasmussen TE, Midwinter MJ. Military Application of Tranexamic Acid in Trauma Emergency Resuscitation (MATTERs) Study. Arch Surg. 2012;147(2):113–9.

    CAS  PubMed  Google Scholar 

  95. Ker K, Roberts I, Shakur H, Coats TJ. Antifibrinolytic drugs for acute traumatic injury. Cochrane Database Syst Rev. 2015;9

    Google Scholar 

  96. Butler FK, Holcomb JB, Shackelford S, Barbabella S, et al. Advanced resuscitative care in tactical combat casualty care: TCCC guidelines change 18-01. J Spec Oper Med. 2018;18(4):37–55.

    PubMed  Google Scholar 

  97. Shakur H, Roberts I, Fawole B, Chaudhri R, et al. Effect of early tranexamic acid administration on mortality, hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-controlled trial. Lancet. 2017;389(10084):2105–16.

    CAS  Google Scholar 

  98. Sprigg N, Flaherty K, Appleton JP, et al. Tranexamic acid for hyperacute primary intracerebral haemorrhage (TICH-2): an international randomised, placebo-controlled, phase 3 superiority trial. Lancet. 2018;391(10135):2107–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. CRASH 3 Trial Collaborators. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH 3): a randomised, placebo-controlled trial. Lancet. 2019;394(10210):1713–23.

    Google Scholar 

  100. Khan M, Jehan F, Bulger EM, O’Keeffe T, et al. Severely injured trauma patients with admission hyperfibrinolysis; is there a role of tranexemic acid? Findings from the PROPPR trial. J Trauma Acute Care Surg. 2018;85(5):851.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Guyette FX, Brown JB, Zenati MS, Early-Young BJ, et al. Tranexamic acid during prehospital transport in patients at risk for hemorrhage after injury: a double-blind, placebo-controlled, randomized clinical trial. JAMA Surg. 2021;156(1):11–20.

    Google Scholar 

  102. Moore HB, Moore EE, Chapman MP, McVaney K, et al. Plasma-first resuscitation to treat haemorrhagic shock during emergency ground transportation in an urban area: a randomised trial. Lancet. 2018;392(10144):283–91.

    PubMed  PubMed Central  Google Scholar 

  103. Sperry JL, Guyette FX, Brown JB, Yazer MH, et al. Prehospital plasma during air medical transport in trauma patients at risk for hemorrhagic shock. NEJM. 2018;379(4):315–26.

    PubMed  Google Scholar 

  104. Pusateri AE, Moore EE, Moore HB, Le TD, et al. Association of prehospital plasma transfusion with survival in trauma patients with hemorrhagic shock when transport times are longer than 20 minutes: a post hoc analysis of the PAMPer and COMBAT clinical trials. JAMA Surg. 2020;155(2):e195085.

    PubMed  Google Scholar 

  105. Holcomb JB, Swartz MD, DeSantis SM, Greene TJ, et al. Multicenter observational prehospital resuscitation on helicopter study (PROHS). J Trauma Acute Care Surg. 2017;83(Suppl. 1):S83–91.

    PubMed  PubMed Central  Google Scholar 

  106. Kuckelman JP, Barron M, Moe D, Derickson M. Extending the golden hour for zone 1 resuscitative endovascular balloon occlusion of the aorta: improved survival and reperfusion injury with intermittent versus continuous resuscitative endovascular balloon occlusion of the aorta in a porcine severe truncal hemorrhage model. J Trauma Acute Care Surg. 2018;85(2):318–26.

    PubMed  Google Scholar 

  107. Northern DM, Manley JD, Lyon R, Farber D. Recent advances in austere combat surgery: use of aortic balloon occlusion as well as blood challenges by special operations medical forces in recent combat operations. J Trauma Acute Care Surg. 2018;85(1S):S98–103.

    PubMed  Google Scholar 

  108. Ross E, Redman T. Feasibility and proposed training pathway for austere application of resuscitative balloon occlusion of the aorta. J Spec Oper Med. 2018;18:37–43.

    PubMed  Google Scholar 

  109. Rasmussen TE, Eliason JL. Military-civilian partnership in device innovation: Development, commercialization and application of resuscitative endovascular balloon occlusion of the aorta. J Trauma Acute Care Surg. 2017;83:732–5.

    PubMed  Google Scholar 

  110. Dubose J. How I do it: partial resuscitative endovascular balloon occlusion of the aorta (P-REBOA). J Trauma Acute Care Surg. 2017;83:197–9.

    PubMed  Google Scholar 

  111. Manley JD, Mitchell BJ, DuBose JJ, Rasmussen TE. A modern case series of resuscitative endovascular balloon occlusion of the aorta (REBOA) in an out-of-hospital, combat casualty care setting. J Spec Oper Med. 2017;17(1):1–8.

    PubMed  Google Scholar 

  112. DuBose JJ, Scalea TM, Brenner M, Skiada D. The AAST prospective Aortic Occlusion for Resuscitation in Trauma and Acute Care Surgery (AORTA) registry: data on contemporary utilization and outcomes of aortic occlusion and resuscitative balloon occlusion of the aorta (REBOA). J Trauma Acute Care Surg. 2016;81(3):409–19.

    PubMed  Google Scholar 

  113. Tisherman SA, Brenner ML. Taking advanced endovascular techniques out of the hospital: ready for prime time? Resuscitation. 2016;107:A3–4.

    PubMed  Google Scholar 

  114. Fisher AD, Miles EA, Cap AP, Strandenes G, Kane SF. Tactical damage control resuscitation. Mil Med. 2015;180(8):869–75.

    PubMed  Google Scholar 

  115. Brenner ML, Moore LJ, DuBose JJ, Tyson GH. A clinical series of resuscitative endovascular balloon occlusion of the aorta for hemorrhage control and resuscitation. J Trauma Acute Care Surg. 2013;75(3):506–11.

    PubMed  Google Scholar 

  116. Pasley JD, Teeter WA, Gamble WB, Wasick P. Bringing Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) closer to the point of injury. J Spec Oper Med. 2018;18(1):33–6.

    PubMed  Google Scholar 

  117. Moore LJ, Martin CD, Harvin JA, Wade CE, Holcomb JB. Resuscitative endovascular balloon occlusion of the aorta for control of noncompressible truncal hemorrhage in the abdomen and pelvis. Am J Surg. 2016;212(6):1222–30.

    PubMed  Google Scholar 

  118. Manzano-Nunez R, Orlas CP, Herrera-Escobar JP, Galvagno S, et al. A meta-analysis of the incidence of complications associated with groin access after the use of resuscitative endovascular balloon occlusion of the aorta in trauma patients. J Trauma Acute Care Surg. 2018;85(3):626–34.

    PubMed  Google Scholar 

  119. Davidson AJ, Russo RM, Reva VA, Brenner ML, et al. The pitfalls of resuscitative endovascular balloon occlusion of the aorta: risk factors and mitigation strategies. J Trauma Acute Care Surg. 2018;84(1):192–202.

    PubMed  Google Scholar 

  120. Reva VA, Matsumura Y, Hörer T, Sveklov DA, et al. Resuscitative endovascular balloon occlusion of the aorta: what is the optimum occlusion time in an ovine model of hemorrhagic shock? Eur J Trauma Emerg Surg. 2018;44(4):511–8.

    CAS  PubMed  Google Scholar 

  121. King DR. Resuscitative endovascular balloon occlusion of the aorta (REBOA)—introduction. J Spec Oper Med. 2018;18:32.

    PubMed  Google Scholar 

  122. DeSoucy ES, Loja M, Davidson AJ, Faulconer ER, et al. Practice preferences using resuscitative endovascular balloon occlusion of the aorta (REBOA) for traumatic injury before and after the 2017 EndoVascular and Hybrid Trauma and Bleeding Management Symposium. J Endovasc Resusc Trauma Manag. 2017;1(1):13–21.

    Google Scholar 

  123. Fisher AD, Teeter WA, Cordova CB, Brenner ML, et al. The role 1 resuscitation ream and resuscitative endovascular balloon occlusion of the aorta. J Spec Oper Med. 2017;17(2):65–73.

    PubMed  Google Scholar 

  124. Cantle PM, Hurley MJ, Swartz MD, Holcomb JB. Methods for early control of abdominal hemorrhage: an assessment of potential benefit. J Spec Oper Med. 2018;18(2):98–104.

    PubMed  Google Scholar 

  125. Sadek S, Lockey DJ, Lendrum RA, Perkins Z, et al. Resuscitative endovascular balloon occlusion of the aorta (REBOA) in the pre-hospital setting: an additional resuscitation option for uncontrolled catastrophic haemorrhage. Resuscitation. 2016;107:135–8.

    PubMed  Google Scholar 

  126. Lendrum R, Perkins Z, Chana M, Marsden M, et al. Pre-hospital resuscitative endovascular balloon occlusion of the aorta (REBOA) for exsanguinating pelvic haemorrhage. Resuscitation. 2019;135:6–13.

    PubMed  Google Scholar 

  127. Zealley IA, Chakraverty S. The role of interventional radiology in trauma. BMJ. 2010;340:c497.

    PubMed  Google Scholar 

  128. Shaftan GW. How interventional radiology changed the practice of a trauma surgeon. Injury. 2008;39(11):1229–31.

    PubMed  Google Scholar 

  129. Gould JE, Vedantham S. The role of interventional radiology in trauma. Semin Intervent Radiol. 2006;23(3):270–48.

    PubMed  PubMed Central  Google Scholar 

  130. Pryor JP, Braslow B, Reilly PM, Gullamondegi O, Hedrick JH, Schwab CW. The evolving role of interventional radiology in trauma care. J Trauma. 2005;59(1):102–4.

    PubMed  Google Scholar 

  131. Stassen NA, Bhullar I, Cheng JD, Crandall ML, et al. Selective nonoperative management of blunt splenic injury. J Trauma Acute Care Surg. 2012;73(5):S294–300.

    PubMed  Google Scholar 

  132. Stassen NA, Bhullar I, Cheng JD, Crandall ML, et al. Nonoperative management of blunt hepatic injury. J Trauma Acute Care Surg. 2012;73(5):S288–93.

    PubMed  Google Scholar 

  133. Hagedorn JC, Fox N, Ellison JS, Russell R, et al. Pediatric blunt renal trauma practice management guidelines: collaboration between the Eastern Association for the Surgery of Trauma and the Pediatric Trauma Society. J Trauma Acute Care Surg. 2019;86(5):916–25.

    PubMed  Google Scholar 

  134. Agolini SF, Shah K, Jaffe J, Newcomb J, et al. Arterial embolization is a rapid and effective technique for controlling pelvic fracture hemorrhage. J Trauma. 1997;43(3):395–9.

    CAS  PubMed  Google Scholar 

  135. Balogh Z, Caldwell E, Heetveld M, D'Amours S, et al. Institutional practice guidelines on management of pelvic fracture-related hemodynamic instability: do they make a difference? J Trauma. 2005;58(4):778–82.

    PubMed  Google Scholar 

  136. Tanizaki S, Maeda S, Matano H, Sera M, et al. Time to pelvic embolization for hemodynamically unstable pelvic fractures may affect the survival for delays up to 60 min. Injury. 2014;45(4):738–41.

    PubMed  Google Scholar 

  137. Gänsslen A, Giannoudis P, Pape HC. Hemorrhage in pelvic fracture: who needs angiography? Curr Opin Crit Care. 2003;9(6):515–23.

    PubMed  Google Scholar 

  138. Tesoriero R, Bruns B, Narayan M, Dubose J, et al. Angiographic embolization for hemorrhage following pelvic fracture. J Trauma Acute Care Surg. 2017;82(1):18–26.

    PubMed  Google Scholar 

  139. Chang R, Fox EE, Greene TJ, Eastridge BJ, et al. Multicenter retrospective study of noncompressible torso hemorrhage: Anatomic locations of bleeding and comparison of endovascular versus open approach. J Trauma Acute Care Surg. 2017 Jul;83(1):11–8.

    PubMed  PubMed Central  Google Scholar 

  140. Matsumoto J, Lohman BD, Morimoto K, Ichinose Y, et al. Damage control interventional radiology (DCIR) in prompt and rapid endovascular strategies in trauma occasions (PRESTO): a new paradigm. Diagn Interv Imaging. 2015;96(7–8):687–91.

    CAS  PubMed  Google Scholar 

  141. Kinoshita T, Yamakawa K, Matsuda H, Yoshikawa Y, et al. The survival benefit of a novel trauma workflow that includes immediate whole-body computed tomography, surgery, and interventional radiology, all in one trauma resuscitation room: a retrospective historical control study. Ann Surg. 2019;269(2):370.

    PubMed  Google Scholar 

  142. Holcomb JB, Fox EE, Scalea TM, Napolitano LM, et al. Current opinion on catheter-based hemorrhage control in trauma patients. J Trauma Acute Care Surg. 2014 Mar;76(3):888–93.

    PubMed  Google Scholar 

  143. Feliciano DV, Mattox KL, Burch JM, et al. Packing for control of hepatic hemorrhage. J Trauma. 1986;26:738–43.

    CAS  PubMed  Google Scholar 

  144. Sharp KW, Locicero RJ. Abdominal packing for surgically uncontrollable hemorrhage. Ann Surg. 1992;215(5):467.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Svoboda JA, Peter ET, Dang CV, et al. Severe liver trauma in the face of coagulopathy. Am J Surg. 1982;144:717–21.

    CAS  PubMed  Google Scholar 

  146. Kanani A, Sandve KO, Søreide K. Management of severe liver injuries: push, pack, pringle–and plug! Scand J Trauma Resusc Emerg Med. 2021;29(1):1–4.

    Google Scholar 

  147. Costantini TW, Coimbra R, Holcomb JB, AAST Pelvic Fracture Study Group, et al. Current management of hemorrhage from severe pelvic fractures: results of an American Association for the Surgery of Trauma multi-institutional trial. J Trauma Acute Care Surg. 2016;80(5):717–25.

    CAS  PubMed  Google Scholar 

  148. Hauschild O, Strohm PC, Culemann U, Pohlemann T, et al. Mortality in patients with pelvic fractures: results from the German pelvic injury register. J Trauma. 2008;64:449–55.

    PubMed  Google Scholar 

  149. Huittinen VM, Slatis P. Postmortem angiography and dissection of the hypogastric artery in pelvic fractures. Surgery. 1973;73:454–62.

    CAS  PubMed  Google Scholar 

  150. Burlew CC, Moore EE, Stahel PF, Geddes AE, et al. Preperitoneal pelvic packing reduces mortality in patients with life-threatening hemorrhage due to unstable pelvic fractures. J Trauma Acute Care Surg. 2017;82(2):233.

    PubMed  PubMed Central  Google Scholar 

  151. Burlew CC, Moore EE, Smith WR, Johnson JL, et al. Preperitoneal pelvic packing/external fixation with secondary angioembolization: optimal care for life-threatening hemorrhage from unstable pelvic fractures. J Am Coll Surg. 2011;212(4):628–35.

    PubMed  Google Scholar 

  152. Rasmussen TE, Clouse WD, Jenkins DH, et al. The use of temporary vascular shunts as a damage control adjunct in the management of wartime vascular injury. J Trauma. 2006;61(1):8–12.

    PubMed  Google Scholar 

  153. Rabinovici R, Bugaev N. Resuscitative thoracotomy: an update. Scand J Surg. 2014;103:112–9.

    CAS  PubMed  Google Scholar 

  154. Seamon MJ, Haut ER, Van Arendonk K, Barbosa RR, et al. An evidence-based approach to patient selection for emergency department thoracotomy: a practice management guideline from the Eastern Association for the Surgery of Trauma. J Trauma Acute Care Surg. 2015;79(1):159–73.

    PubMed  Google Scholar 

  155. Burlew CC, Moore EE, Moore FA, Coimbra R, et al. Western Trauma Association critical decisions in trauma: resuscitative thoracotomy. J Trauma Acute Care Surg. 2012;73(6):1359–63.

    PubMed  Google Scholar 

  156. Davies GE, Lockey DJ. Thirteen survivors of prehospital thoracotomy for penetrating trauma: a prehospital physician-performed resuscitation procedure that can yield good results. J Trauma. 2011;70:E75–8.

    PubMed  Google Scholar 

  157. Lockey DJ, Davies G. Pre-hospital thoracotomy: a radical resuscitation intervention come of age? Resuscitation. 2007;75:394–5.

    CAS  PubMed  Google Scholar 

  158. Matsumoto H, Mashiko K, Hara Y, Kutsukata N, et al. Role of resuscitative emergency field thoracotomy in the Japanese helicopter emergency medical service system. Resuscitation. 2009;80:1270–4.

    PubMed  Google Scholar 

  159. Stannard A, Morrison JJ, Scott DJ, Ivatury RA, et al. The epidemiology of noncompressible torso hemorrhage in the wars in Iraq and Afghanistan. J Trauma Acute Care Surg. 2013;74:830–4.

    PubMed  Google Scholar 

  160. Moore LJ, Brenner M, Kozar RA, Pasley J, et al. Implementation of resuscitative endovascular balloon occlusion of the aorta as an alternative to resuscitative thoracotomy for noncompressible truncal hemorrhage. J Trauma Acute Care Surg. 2015;79:523–30.

    PubMed  Google Scholar 

  161. Norii T, Crandall C, Terasaka Y. Survival of severe blunt trauma patients treated with resuscitative endovascular balloon occlusion of the aorta compared with propensity score-adjusted untreated patients. J Trauma Acute Care Surg. 2015;78:721–8.

    PubMed  Google Scholar 

  162. Bulger EM, Perina DG, Qasim Z, Beldowicz B, et al. Clinical use of resuscitative endovascular balloon occlusion of the aorta (REBOA) in civilian trauma systems in the USA, 2019: a joint statement from the American College of Surgeons Committee on Trauma, the American College of Emergency Physicians, the National Association of Emergency Medical Services Physicians and the National Association of Emergency Medical Technicians. Trauma Surg Acute Care Open. 2019;4(1):e000376.

    PubMed  PubMed Central  Google Scholar 

  163. Schrock T, Blaisdell FW, Mathewson C. Management of blunt trauma to the liver and hepatic veins. Arch Surg. 1968;96:698–704.

    CAS  PubMed  Google Scholar 

  164. Burch JM, Feliciano DV, Mattox KL. The atriocaval shunt: facts and fiction. Ann Surg. 1998;207:555–68.

    Google Scholar 

  165. Liu PP, Chen CL, Cheng YF, Hsieh PM, et al. Use of a refined operative strategy in combination with the multidisciplinary approach to manage blunt juxtahepatic venous injuries. J Trauma. 2005;59(4):940–5.

    CAS  PubMed  Google Scholar 

  166. Krige JE, Worthley CS, Terblanche J. Severe juxtahepatic venous injury: survival after prolonged hepatic vascular isolation without shunting. HPB Surg. 1990;3(1):39–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Horwitz JR, Black T, Lally KP, Andrassy RJ. Venovenous bypass as an adjunct for the management of a retrohepatic venous injury in a child. J Trauma. 1995;39(3):84–585.

    Google Scholar 

  168. Thomford NR, Papouras WC, Durzinsky DS. Active venovenous bypass of the retrohepatic vena cava utilizing two atrial cannulae. Am Surg. 1998;64(8):791–4.

    CAS  PubMed  Google Scholar 

  169. Baumgartner F, Scudamore C, Nair C, Karusseit O, Hemming A. Venovenous bypass for major hepatic and caval trauma. J Trauma. 1995;39(4):671–3.

    CAS  PubMed  Google Scholar 

  170. Buckman RF Jr, Miraliakbari R, Badellino MM. Juxtahepatic venous injuries: a critical review of reported management strategies. J Trauma Acute Care Surg. 2000;48(5):978–84.

    Google Scholar 

  171. Duggan M, Rago A, Sharma U, Zugates G, et al. Self-expanding polyurethane polymer improves survival in a model of noncompressible massive abdominal hemorrhage. J Trauma Acute Care Surg. 2013;74:1462–7.

    CAS  PubMed  Google Scholar 

  172. Rago AP, Marini J, Duggan MJ, Beagle J, et al. Diagnosis and deployment of a self-expanding foam for abdominal exsanguination: Translational questions for human use. J Trauma Acute Care Surg. 2015;78:607–13.

    PubMed  Google Scholar 

  173. Peev MP, Rago A, Hwabejire JO, Duggan MJ, et al. Self-expanding foam for prehospital treatment of severe intra-abdominal hemorrhage: dose finding study. J Trauma Acute Care Surg. 2014;76:619–23.

    PubMed  Google Scholar 

  174. Rago AP, Larentzakis A, Marini J, Picard A, et al. Efficacy of a prehospital self-expanding polyurethane foam for noncompressible hemorrhage under extreme operational conditions. J Trauma Acute Care Surg. 2015;78:324–9.

    CAS  PubMed  Google Scholar 

  175. Rago AP, Duggan MJ, Beagle J, Peev MP, et al. Self-expanding foam for prehospital treatment of intra-abdominal hemorrhage: 28-day survival and safety. J Trauma Acute Care Surg. 2014;77:S127–33.

    CAS  PubMed  Google Scholar 

  176. Rago A, Duggan MJ, Marini J, Beagle J, et al. Self-expanding foam improves survival following a lethal, exsanguinating iliac artery injury. J Trauma Acute Care Surg 2014;77:73–7.

    Google Scholar 

  177. Kirkpatrick AW, Vis C, Dubé M, Biesbroek S, et al. The evolution of a purpose designed hybrid trauma operating room from the trauma service perspective: the RAPTOR (resuscitation with angiography percutaneous treatments and operative resuscitations). Injury. 2014;45(9):1413–21.

    PubMed  Google Scholar 

  178. Vertrees A, Wakefield M, Pickett C, Greer L, et al. Outcomes of primary repair and primary anastomosis in war-related colon injuries. J Trauma. 2009;66:1286–91.

    PubMed  Google Scholar 

  179. Tuma MA, Stansbury LG, Stein DM, McQuillan KA, Scalea TM. Induced hypothermia after cardiac arrest in trauma patients: a case series. J Trauma Acute Care Surg. 2011;71(6):1524–7.

    Google Scholar 

  180. Kutcher ME, Forsythe RM, Tisherman SA. Emergency preservation and resuscitation for cardiac arrest from trauma. Int J Surg. 2016 Sep;1(33):209–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dilday, J., Holcomb, J.B. (2023). Strategies to Control Hemorrhage in the Trauma Patient. In: Aseni, P., Grande, A.M., Leppäniemi, A., Chiara, O. (eds) The High-risk Surgical Patient. Springer, Cham. https://doi.org/10.1007/978-3-031-17273-1_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17273-1_78

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17272-4

  • Online ISBN: 978-3-031-17273-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics