Skip to main content

New Technologies in Urologic Surgery: Robotic and Minimally Invasive Procedures

  • Chapter
  • First Online:
The High-risk Surgical Patient

Abstract

High-risk surgical patients are a notable subset of surgical candidates at higher risk of post-operative adverse events. A complete preoperative evaluation is crucial to define the most appropriate therapeutic strategy in order to limit healthcare resource utilization and surgical morbidity.

There is an ongoing need to improve the outcome in frail, high-risk surgical patients submitted to urological procedures. In the latest years, minimally invasive procedures have gained popularity thanks to the technical and clinical advantages as compared to classical open surgeries. Minimally invasive surgical approaches may represent a potential strategy to improve the outcomes in high-risk surgical patients. Unfortunately, the available literature still lacks strong evidence on the role of minimally invasive procedures in this subset of patients, although it seems to provide better results with appropriate recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pearse RM, Harrison DA, James P, et al. Identification and characterization of the high-risk surgical population in the United Kingdom. Crit Care. 2006;10:R81.

    PubMed  PubMed Central  Google Scholar 

  2. Bose S, Talmor D. Who is a high-risk surgical patient? Curr Opin Crit Care. 2018;24(6):547–53.

    PubMed  Google Scholar 

  3. Beggs T, Sepehri A, Szwajcer A, et al. Frailty and perioperative outcomes: a narrative review. Can J Anaesth. 2015;62:143–57.

    PubMed  Google Scholar 

  4. Hall DE, Arya S, Schmid KK, et al. Development and initial validation of the risk analysis index for measuring frailty in surgical populations. JAMA Surg. 2017;152(2):175–82.

    PubMed  PubMed Central  Google Scholar 

  5. Arya S, Varley P, Youk A, et al. Recalibration and external validation of the risk analysis index: a surgical frailty assessment tool. Ann Surg. 2020;272(6):996–1005.

    PubMed  Google Scholar 

  6. Shinall MC Jr, Arya S, Youk A, et al. Association of preoperative patient frailty and operative stress with postoperative mortality. Association of preoperative patient frailty and operative stress with postoperative mortality. JAMA Surg. 2020;155(1):e194620.

    PubMed  Google Scholar 

  7. Taylor BL, Xia L, Guzzo TJ, et al. Frailty and greater health care resource utilization following major urologic oncology surgery. Eur Urol Oncol. 2019;2(1):21–7.

    PubMed  Google Scholar 

  8. McDougall EM, Clayman RV. Advances in laparoscopic urology, part I. History and development of procedures. Urology. 1994;43(4):420–6.

    CAS  PubMed  Google Scholar 

  9. Clayman RV, Kavoussi LR, Soper NJ, Det al. Laparoscopic nephrectomy: initial case report. J Urol 1991;146(2):278-282.

    Google Scholar 

  10. Guillonneau B, Vallancien G. Laparoscopic radical prostatectomy: the Montsouris experience. J Urol. 2000;163(2):418–22.

    CAS  PubMed  Google Scholar 

  11. Dobbs RW, Magnan BP, Abhyankar N, et al. Cost effectiveness and robot-assisted urologic surgery: does it make dollars and sense? Minerva Urol Nefrol. 2017;69(4):313–23.

    PubMed  Google Scholar 

  12. Dobbs RW, Sofer L, Crivellaro S. Starting a robotic surgery program. In: Rané A, et al., editors. Practical tips in urology. London: Springer; 2017. p. 513–24.

    Google Scholar 

  13. Leow JJ, Chang SL, Meyer CP, et al. Robot-assisted versus open radical prostatectomy: a contemporary analysis of an all-payer discharge database. Eur Urol. 2016;70(5):837–45.

    PubMed  Google Scholar 

  14. EAU Guidelines. Edn. presented at the EAU Annual Congress Milan 2021. ISBN: 978-94-92671-13-4.

    Google Scholar 

  15. Wallis CJ, Garbens A, Chopra S, et al. Review robotic partial nephrectomy: expanding utilization, advancing innovation. J Endourol. 2017;31(4):348–54.

    PubMed  Google Scholar 

  16. Larcher A, Capitanio U, De Naeyer G, et al. Is robot-assisted surgery contraindicated in the case of partial nephrectomy for complex tumours or relevant comorbidities? A comparative analysis of morbidity, renal function, and oncologic outcomes. Eur Urol Oncol. 2018;1(1):61–8.

    PubMed  Google Scholar 

  17. Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17:1471–4.

    PubMed  Google Scholar 

  18. Charlson ME, Pompei P, Ales KL, et al. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40:373–83.

    CAS  PubMed  Google Scholar 

  19. Clavien PA, Barkun J, de Oliveira ML, et al. The Clavien-Dindo classification of surgical complications. Ann Surg. 2009;250:187–96.

    PubMed  Google Scholar 

  20. Larcher A, Wallis CJD, Pavan N, et al. Outcomes of minimally invasive partial nephrectomy among very elderly patients: report from the RESURGE collaborative international database. Cent Eur J Urol. 2020;73(3):273–9.

    Google Scholar 

  21. Larcher A, Fossati N, Tian Z, et al. Prediction of complications following partial nephrectomy: implications for ablative techniques candidates. Eur Urol. 2016;69:676–82.

    PubMed  Google Scholar 

  22. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.

    CAS  PubMed  Google Scholar 

  23. Bill-Axelson L, Holmberg HG, et al. Radical prostatectomy or watchful waiting in prostate cancer—29-year follow-up. N Engl J Med. 2018;379:2319–29.

    PubMed  Google Scholar 

  24. Wilt TJ, Vo TN, Langsetmo L, et al. Radical prostatectomy or observation for clinically localized prostate cancer: extended follow-up of the prostate cancer intervention versus observation trial (PIVOT). Eur Urol. 2020;77:713–24.

    CAS  PubMed  Google Scholar 

  25. Yaxley JW, Coughlin GD, Chambers SK, et al. Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: early outcomes from a randomised controlled phase 3 study. Lancet. 2016;388:1057–66.

    PubMed  Google Scholar 

  26. Ong WL, Evans SM, Spelman T, et al. Millar comparison of oncological and health-related quality of life outcomes between open and robot-assisted radical prostatectomy for localized prostate cancer—findings from the population-based Victorian Prostate Cancer Registry. BJU Int. 2016;118:563–9.

    PubMed  Google Scholar 

  27. Haese A, Knipper S, Isbarn H, et al. A comparative study of robot-assisted and open radical prostatectomy in 10,790 men treated by highly trained surgeons for both procedures. BJU Int. 2019;123:1031–40.

    PubMed  Google Scholar 

  28. Lantz A, Bock D, Akre O, Angenete E, et al. Functional and oncological outcomes after open versus robot-assisted laparoscopic radical prostatectomy for localised prostate cancer: 8-year follow-up. Eur Urol. 2021:S0302-2838(21)01928-X.

    Google Scholar 

  29. Lbertsen PC, Albertsen PC, Moore DF, Shih W, et al. Impact of comorbidity on survival among men with localized prostate cancer. J Clin Oncol. 2011;29:1335.

    Google Scholar 

  30. Labanaris AP, Witt JH, Zugor V. Robotic-assisted radical prostatectomy in men >/=75 years of age. Surgical, oncological and functional outcomes. Anticancer Res. 2021;32(5):2085–9.

    Google Scholar 

  31. Rogers CG, Sammon JD, Sukumar S, et al. Robot assisted radical prostatectomy for elderly patients with high-risk prostate cancer. Urol Oncol. 2013;31(2):193–7.

    PubMed  Google Scholar 

  32. Gurung PMS, Wang B, Hassig S, et al. Oncological and functional outcomes in patients over 70 years of age treated with robotic radical prostatectomy: a propensity-matched analysis. World J Urol. 2021;39(4):1131–40.

    PubMed  Google Scholar 

  33. Dell’Oglio P, Boehm K, Trudeau V, et al. survival after conservative management versus external beam radiation therapy in elderly patients with localized prostate cancer. Int J Radiat Oncol Biol Phys. 2016;96(5):1037–45.

    PubMed  Google Scholar 

  34. Galfano A, Ascione A, Grimaldi S, et al. A new anatomic approach for robot-assisted laparoscopic prostatectomy: a feasibility study for completely intrafascial surgery. Eur Urol. 2010;58(3):457–61.

    PubMed  Google Scholar 

  35. Davis M, Egan J, Marhamati S, Galfano A, et al. Retzius-sparing robot-assisted robotic prostatectomy: past, present, and future. Urol Clin North Am. 2021;48(1):11–23.

    PubMed  Google Scholar 

  36. Statistics adapted from the American Cancer Society’s (ACS) publication, Cancer Facts & Figures 2021 and the ACS website (sources accessed January 2021). https://www.cancer.net/cancer-types/bladder-cancer/statistics.

  37. Novara G, Catto JW, Wilson T, et al. Systematic review and cumulative analysis of perioperative outcomes and complications after robot-assisted radical cystectomy. Eur Urol. 2015;67(3):376–401.

    PubMed  Google Scholar 

  38. Shabsigh A, Korets R, Vora KC, et al. Defining early morbidity of radical cystectomy for patients with bladder cancer using a standardized reporting methodology. Eur Urol. 2009;55(1):164–74.

    PubMed  Google Scholar 

  39. Kahlmeyer A, Fiebig C, Mueller M, et al. Geriatric assessments can predict functional outcome and mortality after urological tumor surgery. Urol Int. 2021;1-10

    Google Scholar 

  40. Boström PJ, Kössi J, Laato M, Nurmi M. Risk factors for mortality and morbidity related to radical cystectomy. BJU Int. 2009;103(2):191–6.

    PubMed  Google Scholar 

  41. Lowrance WT, Rumohr JA, Chang SS, et al. Contemporary open radical cystectomy: analysis of perioperative outcomes. J Urol. 2008;179(4):1313–8; discussion 1318.

    PubMed  Google Scholar 

  42. Menon M, Hemal AK, Tewari A, et al. Nerve-sparing robot-assisted radical cystoprostatec-tomy and urinary diversion. BJU Int. 2003;92(3):232–6.

    CAS  PubMed  Google Scholar 

  43. Xia L, Wang X, Xu T, et al. Robotic versus open radical cystectomy: an updated systematic review and meta-analysis. PLoS One. 2015;10(3):e0121032.

    PubMed  PubMed Central  Google Scholar 

  44. Faraj K, Chang YH, Neville MR, et al. Robotic vs. open cystectomy: how length-of-stay differences relate conditionally to age. Urol Oncol. 2019;37:354.e1.

    PubMed  Google Scholar 

  45. Hanna N, Leow JJ, Sun M, et al. Comparative effectiveness of robot-assisted vs. open radical cystectomy. Urol Oncol. 2018;36(3):88.e1–9.

    PubMed  Google Scholar 

  46. Adamczyk P, Pobłocki P, Kadlubowski M, et al. Complication rate after radical cystectomy depends on the surgical technique and Patient's clinical status. Urol Int. 2021;1-8

    Google Scholar 

  47. Chang SS, Jacobs B, Wells N, et al. Increased body mass index predicts increased blood loss during radical cystectomy. J Urol. 2004;171(3):1077–9.

    PubMed  Google Scholar 

  48. García-Perdomo HA, Montes-Cardona CE, Guacheta M, et al. Muscle-invasive bladder cancer organ-preserving therapy: systematic review and meta-analysis. World J Urol. 2018;36:1997–2008.

    PubMed  Google Scholar 

  49. Iwamura H, Hatakeyama S, Momota M, et al. Relationship of frailty with treatment modality selection in patients with muscle-invasive bladder cancer (FRART-BC study). Transl Androl Urol. 2021;10(3):1143–51.

    PubMed  PubMed Central  Google Scholar 

  50. Lim KB. Epidemiology of clinical benign prostatic hyperplasia. Asian J Urol. 2017;4:148–51.

    PubMed  PubMed Central  Google Scholar 

  51. Checcucci E, Veccia A, De Cillis S, et al. Uro-technology and SoMe Working Group of the Young Academic Urologists Working Party of the European Association of Urology and of the Lower Tract and Research Group of the European Section of Uro-technology. New ultra-minimally invasive surgical treatment for benign prostatic hyperplasia: a systematic review and analysis of comparative outcomes. Eur Urol Open Sci. 2021;33:28–41.

    PubMed  PubMed Central  Google Scholar 

  52. Rampoldi A, Barbosa F, Secco S, et al. Prostatic artery embolization as an alternative to indwelling bladder catheterization to manage benign prostatic hyperplasia in poor surgical candidates. Cardiovasc Intervent Radiol. 2017;40(4):530–6.

    PubMed  Google Scholar 

  53. Lee HY, Yang YH, Lee YL, et al. Noncontrast computed tomography factors that predict the renal stone outcome after shock wave lithotripsy. Clin Imag. 2015;39(5):845–50.

    Google Scholar 

  54. Pearle MS, Lingeman JE, Leveillee R, et al. Prospective, randomized trial comparing shock wave lithotripsy and ureteroscopy for lower pole caliceal calculi 1 cm or less. J Urol. 2005;173:2005.

    PubMed  Google Scholar 

  55. Lingeman JE, Coury TA, Newman DM, et al. Comparison of results and morbidity of percutaneous nephrostolithotomy and extracorporeal shock wave lithotripsy. J Urol. 1987;138(3):485–90.

    CAS  PubMed  Google Scholar 

  56. Shinde S, Al Balushi Y, Hossny M, Jose S, Al Busaidy S. Factors affecting the outcome of extracorporeal shockwave lithotripsy in urinary stone treatment. Oman Med J. 2018;33(3):209–17.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ambrosini, F., Dell’Oglio, P., Bocciardi, A.M., Galfano, A. (2023). New Technologies in Urologic Surgery: Robotic and Minimally Invasive Procedures. In: Aseni, P., Grande, A.M., Leppäniemi, A., Chiara, O. (eds) The High-risk Surgical Patient. Springer, Cham. https://doi.org/10.1007/978-3-031-17273-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17273-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17272-4

  • Online ISBN: 978-3-031-17273-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics