Skip to main content

Fluorescence

  • Chapter
  • First Online:
Modern Optical Spectroscopy

Abstract

We have seen that light can excite molecules from their ground states to states with higher energies and can stimulate downward transitions from excited states to the ground state. But excited molecules also decay to the ground state even when the light intensity is zero. The extra energy of the excited molecule can be radiated as fluorescence, transferred to another molecule, or dissipated to the surroundings as heat. In this chapter we consider fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Einstein, A.: Quantum theory of radiation. Phys. Z. 18, 121–128 (1917) Eng. transl.: van der Waerden, B.L. (ed.), Sources of Quantum Mechanics. Amsterdam: North Holland, pp. 63-67 (1967)

    CAS  Google Scholar 

  2. Callis, P.R.: Molecular orbital theory of the 1Lb and 1La states of indole. J. Chem. Phys. 95, 4230–4240 (1991)

    Article  CAS  Google Scholar 

  3. Callis, P.R.: 1La and 1Lb transitions of tryptophan: applications of theory and experimental observations to fluorescence of proteins. Meth. Enzymol. 278, 113–150 (1997)

    Article  CAS  Google Scholar 

  4. Vivian, J.T., Callis, P.R.: Mechanisms of tryptophan fluorescence shifts in proteins. Biophys. J. 80, 2093–2109 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gafni, A., DeToma, R.P., Manrow, R.E., Brand, L.: Nanosecond decay studies of a fluorescence probe bound to apomyoglobin. Biophys. J. 17, 155–168 (1977)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Badea, M.G., Brand, L.: Time-resolved fluorescence measurements. Meth. Enzymol. 61, 378–425 (1979)

    Article  CAS  Google Scholar 

  7. Pierce, D.W., Boxer, S.G.: Stark effect spectroscopy of tryptophan. Biophys. J. 68, 1583–1591 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lakowicz, J.R.: On spectral relaxation in proteins. Photochem. Photobiol. 72, 421–437 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cote, M.J., Kauffman, J.F., Smith, P.G., McDonald, J.D.: Picosecond fluorescence depletion spectroscopy. 1. Theory and apparatus. J. Chem. Phys. 90, 2865–2874 (1989)

    Article  CAS  Google Scholar 

  10. Kauffman, J.F., Cote, M.J., Smith, P.G., McDonald, J.D.: Picosecond fluorescence depletion spectroscopy. 2. Intramolecular vibrational relaxation in the excited electronic state of fluorene. J. Chem. Phys. 90, 2874–2891 (1989)

    Article  CAS  Google Scholar 

  11. Kusba, J., Bogdanov, V., Gryczynski, I., Lakowicz, J.R.: Theory of light quenching. Effects on fluorescence polarization, intensity, and anisotropy decays. Biophys. J. 67, 2024–2040 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lakowicz, J.R., Gryczynski, I., Kusba, J., Bogdanov, V.: Light quenching of fluorescence. A new method to control the excited-state lifetime and orientation of fluorophores. Photochem. Photobiol. 60, 546–562 (1994)

    Article  CAS  PubMed  Google Scholar 

  13. Zhong, Q.H., Wang, Z.H., Sun, Y., Zhu, Q.H., Kong, F.N.: Vibrational relaxation of dye molecules in solution studied by femtosecond time-resolved stimulated emission pumping fluorescence depletion. Chem. Phys. Lett. 248, 277–282 (1996)

    Article  CAS  Google Scholar 

  14. Nagarajan, V., Parson, W.: Femtosecond fluorescence depletion anisotropy: application to the B850 antenna complex of Rhodobacter sphaeroides. J. Phys. Chem. B. 104, 4010–4013 (2000)

    Article  CAS  Google Scholar 

  15. Nakatsu, T., Ichiyama, S., Hiratake, J., Saldanha, A., Kobashi, N., Sakata, K., Kato, H.: Spectral difference in luciferase bioluminescence. Nature. 440, 372–376 (2006)

    Article  CAS  PubMed  Google Scholar 

  16. Birks, J.B., Dyson, D.J.: The relationship between absorption intensity and fluorescence lifetime of a molecule. Proc. Roy. Soc. Lond. Ser. A. 275, 135–148 (1963)

    Article  CAS  Google Scholar 

  17. Birks, J.B.: Photophysics of Aromatic Molecules. Wiley-Interscience, New York (1970)

    Google Scholar 

  18. Lewis, G.N., Kasha, M.: Phosphorescence in fluid media and the reverse process of singlet-triplet absorption. J. Am. Chem. Soc. 67, 994–1003 (1945)

    Article  CAS  Google Scholar 

  19. Förster, T.: Fluoreszenz Organischer Verbindungen. Vandenhoeck & Ruprecht, Göttingen (1951)

    Google Scholar 

  20. Strickler, S.J., Berg, R.A.: Relationship between absorption intensity and fluorescence lifetime of a molecule. J. Chem. Phys. 37, 814–822 (1962)

    Article  CAS  Google Scholar 

  21. Ross, R.T.: Radiative lifetime and thermodynamic potential of excited states. Photochem. Photobiol. 21, 401–406 (1975)

    Article  CAS  Google Scholar 

  22. Seybold, P.G., Gouterman, M., Callis, J.B.: Calorimetric, photometric and lifetime determinations of fluorescence yields of fluorescein dyes. Photochem. Photobiol. 9, 229–242 (1969)

    Article  CAS  PubMed  Google Scholar 

  23. van Metter, R.L., Knox, R.S.: Relation between absorption and emission spectra of molecules in solution. Chem. Phys. 12, 333–340 (1976)

    Article  Google Scholar 

  24. Becker, M., Nagarajan, V., Parson, W.W.: Properties of the excited singlet states of bacteriochlorophyll a and bacteriopheophytin a in polar solvents. J. Am. Chem. Soc. 113, 6840–6848 (1991)

    Article  CAS  Google Scholar 

  25. Knox, R.S., Laible, P.D., Sawicki, D.A., Talbot, M.F.J.: Does excited chlorophyll a equilibrate in solution? J. Luminescence. 72, 580–581 (1997)

    Article  Google Scholar 

  26. Hameka, H.: Advanced Quantum Chemistry. Addison-Wesley, Reading, MA (1965)

    Google Scholar 

  27. Sargent III, M., Scully, M.O., Lamb, W.E.J.: Laser Physics. Addison-Wesley, New York (1974)

    Google Scholar 

  28. Ditchburn, R.W.: Light, 3rd edn. Academic, New York (1976)

    Google Scholar 

  29. Schatz, G.C., Ratner, M.A.: Quantum Mechanics in Chemistry, p. 325. Prentice-Hall, Englewood Cliffs, NJ (1993)

    Google Scholar 

  30. Jablonski, A.: Über den Mechanismus der Photolumineszenz von Farbstoffephosphoren. Z. Phys. 94, 38–46 (1935)

    Article  CAS  Google Scholar 

  31. Lakowicz, J.R., Laczko, G., Cherek, H., Gratton, E., Limkeman, M.: Analysis of fluorescence decay kinetics from variable-frequency phase shift and modulation data. Biophys. J. 46, 463–477 (1984)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 3rd edn. Springer, New York (2006)

    Book  Google Scholar 

  33. Holzwarth, A.R.: Time-resolved fluorescence spectroscopy. Meth. Enzymol. 246, 334–362 (1995)

    Article  CAS  Google Scholar 

  34. Royer, C.A.: Fluorescence spectroscopy. Meth. Enzymol. 40, 65–89 (1995)

    CAS  Google Scholar 

  35. Valeur, B.: Molecular Fluorescence. Wiley-VCH, Manheim (2002)

    Google Scholar 

  36. Kasha, M.: Characterization of electronic transitions in complex molecules. Faraday Discuss. Chem. Soc. 9, 14–19 (1950)

    Article  Google Scholar 

  37. Stern, O., Volmer, M.: The extinction period of fluorescence. Phys. Z. 20, 183–188 (1919)

    CAS  Google Scholar 

  38. Eftink, M.R., Ghiron, C.A.: Exposure of tryptophanyl residues in proteins. Quantitative determination by fluorescence quenching studies. Biochemistry. 15, 672–680 (1976)

    Article  CAS  PubMed  Google Scholar 

  39. Ren, J., Lew, S., Wang, Z., London, E.: Transmembrane orientation of hydrophobic α-helices is regulated both by the relationship of helix length to bilayer thickness and by the cholesterol concentration. Biochemistry. 36, 10213–10220 (1997)

    Article  CAS  PubMed  Google Scholar 

  40. Malenbaum, S.E., Collier, R.J., London, E.: Membrane topography of the T domain of diphtheria toxin probed with single tryptophan mutants. Biochemistry. 37, 17915–17922 (1998)

    Article  CAS  PubMed  Google Scholar 

  41. Lehrer, S.S.: Solute perturbation of protein fluorescence. The quenching of the tryptophanyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry. 10, 3254–3263 (1971)

    Article  CAS  PubMed  Google Scholar 

  42. Beechem, J.M., Brand, L.: Time-resolved fluorescence of proteins. Annu. Rev. Biochem. 54, 43–71 (1985)

    Article  CAS  PubMed  Google Scholar 

  43. Eftink, M.R.: Fluorescence techniques for studying protein structure. In: Schulter, C.H. (ed.) Methods in Biochemical Analysis, pp. 127–205. Wiley, New York (1991)

    Google Scholar 

  44. Millar, D.P.: Time-resolved fluorescence spectroscopy. Curr. Opin. Struct. Biol. 6, 637–642 (1996)

    Article  CAS  PubMed  Google Scholar 

  45. Plaxco, K.W., Dobson, C.M.: Time-resolved biophysical methods in the study of protein folding. Curr. Opin. Struct. Biol. 6, 630–636 (1996)

    Article  CAS  PubMed  Google Scholar 

  46. Royer, C.A.: Probing protein folding and conformational transitions with fluorescence. Chem. Rev. 106, 1769–1784 (2006)

    Article  CAS  PubMed  Google Scholar 

  47. Kubelka, J., Eaton, W.A., Hofrichter, J.: Experimental tests of villin subdomain folding simulations. J. Mol. Biol. 329, 625–630 (2003)

    Article  CAS  PubMed  Google Scholar 

  48. Kubelka, J., Henry, E.R., Cellmer, T., Hofrichter, J., Eaton, W.A.: Chemical, physical, and theoretical kinetics of an ultrafast folding protein. Proc. Natl. Acad. Sci. U. S. A. 105, 18655–18662 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Parson, W.: Competition between tryptophan fluorescence and electron transfer during unfolding of the villin headpiece. Biochemist. 53, 4503–4509 (2014)

    Article  CAS  Google Scholar 

  50. Cowgill, R.W.: Fluorescence and the structure of proteins. I. Effects of substituents on the fluorescence of indole and phenol compounds. Arch. Biochem. Biophys. 100, 36–44 (1963)

    Article  CAS  PubMed  Google Scholar 

  51. Callis, P.R., Liu, T.: Quantitative predictions of fluorescence quantum yields for tryptophan in proteins. J. Phys. Chem. B. 108, 4248–4259 (2004)

    Article  CAS  Google Scholar 

  52. McMillan, A.W., Kier, B.L., Shu, I., Byrne, A., Andersen, N.H., Parson, W.: Fluorescence of tryptophan in designed hairpin and Trp-cage miniproteins: measurements of fluorescence yields and calculations by quantum mechanical molecular dynamics simulations. J. Phys. Chem. B. 117, 1790–1809 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shastry, M.C.R., Roder, H.: Evidence for barrier-limited protein folding kinetics on the microsecond time scale. Nat. Struct. Biol. 5, 385–392 (1998)

    Article  CAS  PubMed  Google Scholar 

  54. Meech, S.R., Philips, D., Lee, A.G.: On the nature of the fluorescent state of methylated indole derivatives. Chem. Phys. 80, 317–328 (1983)

    Article  CAS  Google Scholar 

  55. Shinitsky, M., Goldman, R.: Fluorometric detection of histidine-trptophan complexes in peptides and proteins. Eur. J. Biochem. 3, 139–144 (1967)

    Article  Google Scholar 

  56. Steiner, R.F., Kirby, E.P.: The interaction of the ground and excited states of indole derivatives with electron scavengers. J. Phys. Chem. 73, 4130–4135 (1969)

    Article  CAS  PubMed  Google Scholar 

  57. Ricci, R.W., Nesta, J.M.: Inter- and intramolecular quenching of indole fluorescence by carbonyl compounds. J. Phys. Chem. 80, 974–980 (1976)

    Article  CAS  Google Scholar 

  58. Loewenthal, R., Sancho, J., Fersht, A.R.: Fluorescence spectrum of barnase: contributions of three trptophan residues and a histidine-related pH dependence. Biochemistry. 30, 6775–7669 (1991)

    Article  CAS  PubMed  Google Scholar 

  59. Chen, Y., Barkley, M.D.: Toward understanding tryptophan fluorescence in proteins. Biochemistry. 37, 9976–9982 (1998)

    Article  CAS  PubMed  Google Scholar 

  60. Chen, Y., Liu, B., Yu, H.-T., Barkley, M.D.: The peptide bond quenches indole fluorescence. J. Am. Chem. Soc. 118, 9271–9278 (1996)

    Article  CAS  Google Scholar 

  61. DeBeuckeleer, K., Volckaert, G., Engelborghs, Y.: Time resolved fluorescence and phosphorescence properties of the individual tryptophan residues of barnase: evidence for protein-protein interactions. Proteins. 36, 42–53 (1999)

    Article  CAS  Google Scholar 

  62. Qiu, W., Li, T., Zhang, L., Yang, Y., Kao, Y.-T., Wang, L., Zhong, D.: Ultrafast quenching of tryptophan fluorescence in proteins: Interresidue and intrahelical electron transfer. Chem. Phys. 350, 154–164 (2008)

    Article  CAS  Google Scholar 

  63. Petrich, J.W., Chang, M.C., McDonald, D.B., Fleming, G.R.: On the origin of non-exponential fluorescence decay in tryptophan and its derivatives. J. Am. Chem. Soc. 105, 3824–3832 (1983)

    Article  CAS  Google Scholar 

  64. Colucci, W.J., Tilstra, L., Sattler, M.C., Fronczek, F.R., Barkley, M.D.: Conformational studies of a constrained tryptophan derivative. Implications for the fluorescence quenching mechanism. J. Am. Chem. Soc. 22, 9182–9190 (1990)

    Article  Google Scholar 

  65. Arnold, S., Tong, L., Sulkes, M.: Fluorescence lifetimes of substituted indoles in solution and in free jets. Evidence for intramolecular charge-transfer quenching. J. Phys. Chem. 98, 2325–2327 (1994)

    Article  CAS  Google Scholar 

  66. Smirnov, A.V., English, D.S., Rich, R.L., Lane, J., Teyton, L., Schwabacher, A.W., Luo, S., Thornburg, R.W., Petrich, J.W.: Photophysics and biological applications of 7-azaindole and its analogs. J. Phys. Chem. 101, 2758–2769 (1997)

    Article  CAS  Google Scholar 

  67. Sillen, A., Hennecke, J., Roethlisberger, D., Glockshuber, R., Engelborghs, Y.: Fluorescence quenching in the DsbA protein from Escherichia coli: complete picture of the excited-state energy pathway and evidence for the reshuffling dynamics of the microstates of tryptophan. Protein Sci. 37, 253–263 (1999)

    Article  CAS  Google Scholar 

  68. Adams, P.D., Chen, Y., Ma, K., Zagorski, M.G., Sönnichsen, F.D., McLaughlin, M.L., Barkley, M.D.: Intramolecular quenching of tryptophan fluorescence by the peptide bond in cyclic hexapeptides. J. Am. Chem. Soc. 124, 9278–9288 (2002)

    Article  CAS  PubMed  Google Scholar 

  69. Callis, P.R., Vivian, J.T.: Understanding the variable fluorescence quantum yield of tryptophan in proteins using QM-MM simulations. Quenching by charge transfer to the peptide backbone. Chem. Phys. Lett. 369, 409–414 (2003)

    Article  CAS  Google Scholar 

  70. Liu, T., Callis, P.R., Hesp, B.H., de Groot, M., Buma, W.J., Broos, J.: Ionization potentials of fluoroindoles and the origin of nonexponential tryptophan fluorescence decay in proteins. J. Am. Chem. Soc. 127, 4104–4113 (2005)

    Article  CAS  PubMed  Google Scholar 

  71. Doose, S., Neuweiler, H., Sauer, M.: Fluorescence quenching by photoinduced electron transfer: a reporter for conformational dynamics of macromolecules. ChemPhysChem. 10, 1389–1398 (2009)

    Article  CAS  PubMed  Google Scholar 

  72. Schlessinger, S.: The effect of amino acid analogues on alkaline phosphatase formation in Escherichia coli K-12. J. Biol. Chem. 243, 3877 (1968)

    Article  Google Scholar 

  73. Ross, J.B.A., Szabo, A.G., Hogue, C.W.V.: Enhancement of protein spectra with tryptophan analogs: fluorescence spectroscopy of protein-protein and protein-nucleic interactions. Meth. Enzymol. 278, 151–190 (1997)

    Article  CAS  Google Scholar 

  74. Broos, J., Maddalena, F., Hesp, B.H.: In vivo synthesized proteins with monoexponential fluorescence decay kinetics. J. Am. Chem. Soc. 126, 22–23 (2004)

    Article  CAS  PubMed  Google Scholar 

  75. Bronskill, P.M., Wong, J.T.: Suppression of fluorescence of tryptophan residues in proteins by replacement with 4-fluorotryptophan. Biochem. J. 249, 305–308 (1988)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ding, B., Hilaire, M.R., Gai, F.: Infrared and fluorescence assessment of protein dynamics: from folding to function. J. Phys. Chem. B. 2016, 5103–5113 (2016)

    Article  Google Scholar 

  77. Hilaire, M.R., Mukherjee, D., Troxler, T., Gai, F.: Solvent dependence of cyanoindole fluorescence lifetime. Chem. Phys. Lett. 685, 133–138 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. You, M., Fan, H., Wang, Y., Zhang, W.: Aldehyde-derivatized indoles as fluorescent probes for hydration environments. Chem. Phys. 526, 110438/1-6 (2019)

    Article  Google Scholar 

  79. Micikas, R.J., Ahmed, I.A., Acharyya, A., Smith, A.B.I., Gai, F.: Tuning the electronic transition energy of indole via substitution: application to identify tryptophan-based chromophores that absorb and emit visible light. Phys. Chem. Chem. Phys. 23, 6433–6437 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Acharyya, A., Zhang, W., Gai, F.: Tryptophan as a template for development of visible fluorescent amino acids. J. Phys. Chem. B. 125, 5458–5465 (2021)

    Article  CAS  PubMed  Google Scholar 

  81. Yu, H.-T., Colucci, W.J., McLaughlin, M.L., Barkley, M.D.: Fluorescence quenching in indoles by excited-state proton transfer. J. Am. Chem. Soc. 114, 8449–8454 (1992)

    Article  CAS  Google Scholar 

  82. Feitelson, J.: On the mechanism of fluorescence quenching. Tyrosine and similar compounds. J. Phys. Chem. 68, 391–397 (1964)

    Article  CAS  Google Scholar 

  83. Cowgill, R.W.: Fluorescence and protein structure. X. Reappraisal of solvent and structural effects. Biochim. Biophys. Acta. 133, 6–18 (1967)

    Article  CAS  PubMed  Google Scholar 

  84. Tournon, J.E., Kuntz, E., El-Bayoumi, M.A.: Fluorescence quenching in phenylalanine and model compounds. Photochem. Photobiol. 16, 425–433 (1972)

    Article  CAS  PubMed  Google Scholar 

  85. Laws, W.R., Ross, J.B.A., Wyssbrod, H.R., Beechem, J.M., Brand, L., Sutherland, L.C.: Time-resolved fluorescence and 1H NMR studies of tyrosine and tyrosine analogs: correlation of NMR-determined rotamer populations and fluorescence kinetics. Biochemistry. 25, 599–607 (1986)

    Article  CAS  PubMed  Google Scholar 

  86. Willis, K.J., Szabo, A.G.: Fluorescence decay kinetics of tyrosinate and tyrosine hydrogen-bonded complexes. J. Phys. Chem. 95, 1585–1589 (1991)

    Article  CAS  Google Scholar 

  87. Ross, J.B.A., Laws, W.R., Rousslang, K.W., Wyssbrod, H.R.: Tyrosine fluorescence and phosphorescence from proteins and peptides. In: Lakowicz, J.R. (ed.) Topics in Fluorescence Spectroscopy, pp. 1–63. Plenum, New York (1992)

    Google Scholar 

  88. Dietze, E.C., Wang, R.W., Lu, A.Y., Atkins, W.M.: Ligand effects on the fluorescence properties of tyrosine 9 in alpha 1-1 glutathione S-transferase. Biochemistry. 35, 6745–6753 (1996)

    Article  CAS  PubMed  Google Scholar 

  89. Mrozek, J., Rzeska, A., Guzow, K., Karolczak, J., Wiczk, W.: Influence of alkyl group on amide nitrogen atom on fluorescence quenching of tyrosine amide and N-acetyltyrosine amide. Biophys. Chem. 111, 105–113 (2004)

    Article  CAS  PubMed  Google Scholar 

  90. van den Berg, P.A., van Hoek, A., Walentas, C.D., Perham, R.N., Visser, A.J.: Flavin fluorescence dynamics and photoinduced electron transfer in Escherichia coli glutathione reductase. Biophys. J. 74, 2046–2058 (1998)

    Article  PubMed  PubMed Central  Google Scholar 

  91. van den Berg, P.A.W., van Hoek, A., Visser, A.J.W.G.: Evidence for a novel mechanism of time-resolved flavin fluorescence depolarization in glutathione reductase. Biophys. J. 87, 2577–2586 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mataga, N., Chosrowjan, H., Shibata, Y., Tanaka, F., Nishina, Y., Shiga, K.: Dynamics and mechanisms of ultrafast fluorescence quenching reactions of flavin chromophores in protein nanospace. J. Phys. Chem. B. 104, 10667–10677 (2000)

    Article  CAS  Google Scholar 

  93. Mataga, N., Chosrowjan, H., Taniguchi, S., Tanaka, F., Kido, N., Kitamura, M.: Femtosecond fluorescence dynamics of flavoproteins: comparative studies on flavodoxin, its site-directed mutants, and riboflavin binding protein regarding ultrafast electron transfer in protein nanospaces. J. Phys. Chem. B. 106, 8917–8920 (2002)

    Article  CAS  Google Scholar 

  94. Callis, P.R., Liu, T.Q.: Short range photoinduced electron transfer in proteins: QM-MM simulations of tryptophan and flavin fluorescence quenching in proteins. Chem. Phys. 326, 230–239 (2006)

    Article  CAS  Google Scholar 

  95. Merkley, E.D., Daggett, V., Parson, W.: A temperature-dependent conformational change of NADH oxidase from Thermus thermophilus HB8. Proteins: Struct. Funct. Bioinform. 80, 546–555 (2011)

    Article  Google Scholar 

  96. Weber, G., Daniel, E.: Cooperative effects in binding by bovine serum albumin. II. The binding of 1-anilino-8-naphthalenesulfonate. Polarization of the ligand fluorescence and quenching of protein fluorescence. Biochemistry. 5, 1900–1907 (1966)

    Article  CAS  PubMed  Google Scholar 

  97. Brand, L., Gohlke, J.R.: Fluorescence probes for structure. Annu. Rev. Biochem. 41, 843–868 (1972)

    Article  CAS  PubMed  Google Scholar 

  98. Pierce, D.W., Boxer, S.G.: Dielectric relaxation in a protein matrix. J. Phys. Chem. 96, 5560–5566 (1992)

    Article  CAS  Google Scholar 

  99. Hiratsuka, T.: Prodan fluorescence reflects differences in nucleotide-induced conformational states in the myosin head and allows continuous visualization of the ATPase reactions. Biochemistry. 37, 7167–7176 (1998)

    Article  CAS  PubMed  Google Scholar 

  100. Waggoner, A.S., Grinvald, A.: Mechanisms of rapid optical changes of potential sensitive dyes. Ann. N. Y. Acad. Sci. 303, 217–241 (1977)

    CAS  PubMed  Google Scholar 

  101. Loew, L.M., Cohen, L.B., Salzberg, B.M., Obaid, A.L., Bezanilla, F.: Charge-shift probes of membrane potential. Characterization of aminostyrylpyridinium dyes on the squid giant axon. Biophys. J. 47, 71–77 (1985)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fromherz, P., Dambacher, K.H., Ephardt, H., Lambacher, A., Mueller, C.O., Neigl, R., Schaden, H., Schenck, O., Vetter, T.: Fluorescent dyes as probes of voltage transients in neuron membranes. Ber. Bunsen-Gesellsch. 95, 1333–1345 (1991)

    Article  CAS  Google Scholar 

  103. Baker, B.J., Kosmidis, E.K., Vucinic, D., Falk, C.X., Cohen, L.B., Djurisic, M., Zecevic, D.: Imaging brain activity with voltage- and calcium-sensitive dyes. Cell. Mol. Neurobiol. 25, 245–282 (2005)

    Article  CAS  PubMed  Google Scholar 

  104. Haugland, R.P.: Handbook of Fluorescent Probes and Research Chemicals, 6th edn. Molecular Probes Inc., Eugene, OR (1996)

    Google Scholar 

  105. Oi, V.T., Glazer, A.N., Stryer, L.: Fluorescent phycobiliprotein conjugates for analyses of cells and molecules. J. Cell Biol. 93, 981–986 (1982)

    Article  CAS  PubMed  Google Scholar 

  106. Kronick, M.N., Grossman, P.D.: Immunoassay techniques with fluorescent phycobiliprotein conjugates. Clin. Chem. 29, 1582–1586 (1983)

    Article  CAS  PubMed  Google Scholar 

  107. Joung, J.F., Han, M., Jeong, M., Park, S.: Experimental database of optical properties of organic compounds. Sci. Data. 7, 295/1-6 (2020)

    Article  Google Scholar 

  108. Joung, J.F., Han, M., Hwang, J., Jeong, M., Choi, D.H., Park, S.: Deep learning optical spectroscopy based on experimental database: potential applications to molecular design. J. Am. Chem. Soc. 4, 427–438 (2021)

    Google Scholar 

  109. Shimomura, O., Johnson, F.H.: Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry. 13, 2656–2662 (1974)

    Article  PubMed  Google Scholar 

  110. Cody, C.W., Prasher, D.C., Westler, W.M., Prendergast, F.G., Ward, W.W.: Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry. 9, 1212–1218 (1979)

    Google Scholar 

  111. Ormö, M., Cubitt, A.B., Kallio, K., Gross, L.A., Tsien, R.Y., Remington, S.J.: Crystal structure of the Aequorea victoria green fluorescent protein. Science. 273, 1392–1395 (1996)

    Article  PubMed  Google Scholar 

  112. Tsien, R.Y.: The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998)

    Article  CAS  PubMed  Google Scholar 

  113. Wachter, R.M.: The family of GFP-like proteins: structure, function, photophysics and biosensor applications. Introduction and perspective. Photochem. Photobiol. 82, 339–344 (2006)

    Article  CAS  PubMed  Google Scholar 

  114. Chattoraj, M., King, B.A., Bublitz, G.U., Boxer, S.G.: Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc. Natl. Acad. Sci. U. S. A. 93, 8362–8367 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Weber, W., Helms, V., McCammon, J.A., Langhoff, P.W.: Shedding light on the dark and weakly fluorescent states of green fluorescent proteins. Proc. Natl. Acad. Sci. U. S. A. 96, 6177–6182 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Webber, N.M., Litvinenko, K.L., Meech, S.R.: Radiationless relaxation in a synthetic analogue of the green fluorescent protein chromophore. J. Phys. Chem. B. 105, 8036–8039 (2001)

    Article  CAS  Google Scholar 

  117. Mandal, D., Tahara, T., Meech, S.R.: Excited-state dynamics in the green fluorescent protein chromophore. J. Phys. Chem. B. 108, 1102–1108 (2004)

    Article  CAS  Google Scholar 

  118. Martin, M.E., Negri, F., Olivucci, M.: Origin, nature, and fate of the fluorescent state of the green fluorescent protein chromophore at the CASPT2//CASSCF resolution. J. Am. Chem. Soc. 126, 5452–5464 (2004)

    Article  CAS  PubMed  Google Scholar 

  119. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., Prasher, D.C.: Green fluorescent protein as a marker for gene expression. Science. 263, 802–805 (1994)

    Article  CAS  PubMed  Google Scholar 

  120. Miyawaki, A., Llopis, J., Heim, R., McCaffrey, J.M., Adams, J.A., Ikura, M., Tsien, R.Y.: Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature. 388, 882–887 (1997)

    Article  CAS  PubMed  Google Scholar 

  121. Zhang, J., Campbell, R.E., Ting, A.Y., Tsien, R.Y.: Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3, 906–918 (2002)

    Article  CAS  PubMed  Google Scholar 

  122. Nienhaus, G.U., Wiedenmann, J.: Structure, dynamics and optical properties of fluorescent proteins: perspectives for marker development. ChemPhysChem. 10, 1369–1379 (2009)

    Article  CAS  PubMed  Google Scholar 

  123. Heim, R., Tsien, R.Y.: Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6, 178–182 (1996)

    Article  CAS  PubMed  Google Scholar 

  124. Wachter, R.M., King, B.A., Heim, R., Kallio, K., Tsien, R.Y., Boxer, S.G., Remington, S.J.: Crystal structure and photodynamic behavior of the blue emission variant Y66H/Y145F of green fluorescent protein. Biochemistry. 36, 9759–9765 (1997)

    Article  CAS  PubMed  Google Scholar 

  125. Miyawaki, A., Griesbeck, O., Heim, R., Tsien, R.Y.: Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc. Natl. Acad. Sci. U. S. A. 96, 2135–2140 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Griesbeck, O., Baird, G.S., Campbell, R.E., Zacharias, D.A., Tsien, R.Y.: Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J. Biol. Chem. 276, 29188–29194 (2001)

    Article  CAS  PubMed  Google Scholar 

  127. Rizzo, M.A., Springer, G.H., Granada, B., Piston, D.W.: An improved cyan fluorescent protein variant usefule for FRET. Nat. Biotech. 22, 445–449 (2004)

    Article  CAS  Google Scholar 

  128. Shaner, N.C., Campbell, R.E., Steinbach, P.A., Giepmans, B.N.G., Palmer, A.E., Tsien, R.Y.: Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotech. 22, 1567–1572 (2004)

    Article  CAS  Google Scholar 

  129. Shaner, N.C., Steinbach, P.A., Tsien, R.Y.: A guide to choosing fluorescent proteins. Nature Meth. 2, 905–909 (2005)

    Article  CAS  Google Scholar 

  130. Matz, M.V., Fradkov, A.F., Labas, Y.A., Savitsky, A.P., Zaraisky, A.G., Markelov, M.L.: Fluorescent proteins from nonbioluminescent Anthozoa species. Nat. Biotech. 17, 969–973 (1999)

    Article  CAS  Google Scholar 

  131. Baird, G.S., Zacharias, D.A., Tsien, R.Y.: Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc. Natl. Acad. Sci. U. S. A. 97, 11984–11989 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Baird, G.S., Zacharias, D.A., Tsien, R.Y.: Circular permutation and receptor insertion within green fluorescent proteins. Proc. Natl. Acad. Sci. U. S. A. 96, 11241–11246 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Nagai, T., Sawano, A., Park, E.S., Miyawaki, A.: Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc. Natl. Acad. Sci. U. S. A. 98, 3197–3202 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lukyanov, K.A., Fradkov, A.F., Gurskaya, N.G., Matz, M.V., et al.: Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J. Biol. Chem. 275, 25879–25882 (2000)

    Article  CAS  PubMed  Google Scholar 

  135. Lippincott-Schwartz, J., Altan-Bonnet, N., Patterson, G.H.: Photobleaching and photoactivation: following protein dynamics in living cells. Nature Cell Biol. 5, S7–S14 (2003)

    Google Scholar 

  136. Patterson, G.H., Lippincott-Schwartz, J.: Selective photolabeling of proteins using photoactivatable GFP. Methods. 32, 445–450 (2004)

    Article  CAS  PubMed  Google Scholar 

  137. Hess, S.T., Girirajan, T.P., Mason, M.D.: Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Alivisatos, A.P., Gu, W., Larabell, C.: Quantum dots as cellular probes. Ann. Rev. Biomed. Eng. 7, 55–76 (2005)

    Article  CAS  Google Scholar 

  139. Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., et al.: Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 307, 538–544 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Burda, C., Chen, X., Narayanan, R., El-Sayed, M.A.: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005)

    Article  CAS  PubMed  Google Scholar 

  141. Doane, T.L., Burda, C.: The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev. 41, 2885–2911 (2012)

    Article  CAS  PubMed  Google Scholar 

  142. Petryayeva, E., Algar, W.R., Medintz, I.L.: Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl. Spectrosc. 67, 215–252 (2013)

    Article  CAS  PubMed  Google Scholar 

  143. Murray, C.B., Kagan, C.R., Bawendi, M.G.: Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Ann. Rev. Mater. Sci. 30, 545–610 (2000)

    Article  CAS  Google Scholar 

  144. Brus, L.E.: Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984)

    Article  CAS  Google Scholar 

  145. Brus, L.E.: Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90, 2555–2560 (1986)

    Article  CAS  Google Scholar 

  146. Nozik, A.J., Williams, F., Nenadovic, M.T., Rajh, T., Micic, O.I.: Size quantization in small semiconductor particles. J. Phys. Chem. 89, 397–399 (1985)

    Article  Google Scholar 

  147. Bawendi, M.G., Wilson, W.L., Rothberg, L., Carroll, P.J., Jedju, T.M., Steigerwald, M.L., Brus, L.E.: Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters. Phys. Rev. Lett. 65, 1623–1626 (1990)

    Article  CAS  PubMed  Google Scholar 

  148. Bruchez Jr., M., Moronne, M., Gin, P., Weiss, S., Alivisatos, A.P.: Semiconductor nanocrystals as fluorescent biological labels. Science. 281, 2013–2016 (1998)

    Article  CAS  PubMed  Google Scholar 

  149. Efros, A.L., Efros, A.L.: Interband absorption of light in a semiconductor sphere. Soviet Phys. Semiconductors. 16, 772–775 (1982)

    Google Scholar 

  150. Gaponenko, S.V.: Optical Properties of Semiconductor Nanocrystals. Cambridge Univ. Press, New York (1998)

    Book  Google Scholar 

  151. Chuang, C.-H., Lo, S.S., Scholes, G.D., Burda, C.: Charge separation and recombination in CdTe/CdSe core/shell nanocrystals as a function of shell coverage: probing the onset of the quasi Type-II regime. J. Phys. Chem. Lett. 1, 2530 (2010)

    Article  CAS  Google Scholar 

  152. Yu, W.W., Qu, L.H., Guo, W.Z., Peng, X.G.: Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854–2860 (2003)

    Article  CAS  Google Scholar 

  153. Samia, A.C.S., Chen, X., Burda, C.: Semiconductor quantum dots for photodynamic therapy. J. Am. Chem. Soc. 125, 15736–15737 (2003)

    Article  CAS  PubMed  Google Scholar 

  154. Dayal, S., Burda, C.: Surface effects on QD-based energy transfer. J. Am. Chem. Soc. 129, 7977–7981 (2007)

    Article  CAS  PubMed  Google Scholar 

  155. Chen, X., Lou, Y., Dayal, S., Qiu, X., Krolicki, R., Burda, C., Zhao, C., Becker, J.: Doped semiconductor materials. J. Nanosci. Nanotech. 5, 1408–1420 (2005)

    Article  CAS  Google Scholar 

  156. Chuang, C.-H., Doane, T.L., Lo, S.S., Scholes, G.D., Burda, C.: Measuring electron and hole transfer in core/shell nanoheterostructures. ACS Nano. 5, 6016–6024 (2011)

    Article  CAS  PubMed  Google Scholar 

  157. Bang, J., Park, J., Lee, J.H., Won, N., et al.: ZnTe/ZnSe (core/shell) type-II quantum dots: their optical and photovoltaic properties. Chem. Mater. 22, 233–240 (2010)

    Article  CAS  Google Scholar 

  158. Eggeling, C., Fries, J.R., Brand, L., Günther, R., Seidel, C.A.M.: Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 95, 1556–1561 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Eggeling, C., Volkmer, A., Seidel, C.A.: Molecular photobleaching kinetics of rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy. ChemPhysChem. 6, 791–804 (2005)

    Article  CAS  PubMed  Google Scholar 

  160. Christ, T., Kulzer, F., Bordat, P., Basché, T.: Watching the photo-oxidation of a single aromatic hydrocarbon molecule. Angew. Chem. Int. Ed. 40, 4192–4195 (2001)

    Article  CAS  Google Scholar 

  161. Hoogenboom, J.P., van Dijk, E.M., Hernando, J., van Hulst, N.F., Garcia-Parajo, M.F.: Power-law-distributed dark states are the main pathway for photobleaching of single organic molecules. Phys. Rev. Lett. 95, 097401 (2005)

    Article  PubMed  Google Scholar 

  162. Bilski, P., Chignell, C.F.: Optimization of a pulse laser spectrometer for the measurement of the kinetics of singlet oxygen O21g) decay in solution. J. Biochem. Biophys. Methods. 33, 73–80 (1996)

    Article  CAS  PubMed  Google Scholar 

  163. Turro, N.: Modern Molecular Photochemistry. Benjamin/Cummings, Menlo Park CA (1978)

    Google Scholar 

  164. Rasnik, I., McKinney, S.A., Ha, T.: Nonblinking and long-lasting single-molecule fluorescence imaging. Nat. Methods. 3, 891–893 (2006)

    Article  CAS  PubMed  Google Scholar 

  165. Vogelsang, J., Kasper, R., Steinhauer, C., Person, B., Heilemann, M., Sauer, M., Tinnefeld, P.: A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angew. Chem. 47, 5465–5469 (2008)

    Article  CAS  Google Scholar 

  166. Campos, L.A., Liu, J., Wang, X., Ramanathan, R., English, D.S.: A photoprotection strategy for microsecond-resolution single-molecule fluorescence spectroscopy. Nat. Methods. 8, 143–146 (2011)

    Article  CAS  PubMed  Google Scholar 

  167. Axelrod, D., Koppel, D.E., Schlessinger, S., Elson, E., Webb, W.W.: Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Jacobson, K., Derzko, Z., Wu, E.S., Hou, Y., Poste, G.: Measurement of the lateral mobility of cell surface components in single, living cells by fluorescence recovery after photobleaching. J. Supramol. Struct. 5, 565–576 (1976)

    Article  Google Scholar 

  169. Schlessinger, J., Koppel, D.E., Axelrod, D., Jacobson, K., Webb, W.W., Elson, E.L.: Lateral transport on cell membranes: mobility of concanavalin a receptors on myoblasts. Proc. Natl. Acad. Sci. U. S. A. 73, 2409–2413 (1976)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Wu, E.S., Jacobson, K., Szoka, F., Portis, J.A.: Lateral diffusion of a hydrophobic peptide, N-4-nitrobenz-2-oxa-1,3-diazole gramicidin S, in phospholipid multibilayers. Biochemistry. 17, 5543–5550 (1978)

    Article  CAS  PubMed  Google Scholar 

  171. Schindler, M., Osborn, M.J., Koppel, D.E.: Lateral diffusion of lipopolysaccharide in the outer membrane of Salmonella typhimurium. Nature. 285, 261–263 (1980)

    Article  CAS  PubMed  Google Scholar 

  172. Lagerholm, B.C., Starr, T.E., Volovyk, Z.N., Thompson, N.L.: Rebinding of IgE fabs at haptenated planar membranes: measurement by total internal reflection with fluorescence photobleaching recovery. Biochemistry. 39, 2042–2051 (1999)

    Article  Google Scholar 

  173. Thompson, N.L., Burghardt, T.P., Axelrod, D.: Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy. Biophys. J. 33, 435–454 (1999)

    Article  Google Scholar 

  174. Reits, E.A.J., Neefjes, J.: From fixed to FRAP: measuring protein mobility and activity in living cells. Nat. Cell Biol. 3, E145–E147 (2001)

    Article  CAS  PubMed  Google Scholar 

  175. Klonis, N., Rug, M., Harper, I., Wickham, M., Cowman, A., Tilley, L.: Fluorescence photobleaching analysis for the study of cellular dynamics. Eur. Biophys. J. 31, 36–51 (2002)

    Article  CAS  PubMed  Google Scholar 

  176. Houtsmuller, A.B.: Fluorescence recovery after photobleaching: application to nuclear proteins. Adv. Biochem. Eng. Biotechnol. 95, 177 (2005)

    CAS  PubMed  Google Scholar 

  177. Houtsmuller, A.B., Vermeulen, W.: Macromolecular dynamics in living cell nuclei revealed by fluorescence redistribution after photobleaching. Histochem. Cell Biol. 115, 13–21 (2001)

    Article  CAS  PubMed  Google Scholar 

  178. Calapez, A., Pereira, H.M., Calado, A., Braga, J., et al.: The intranuclear mobility of messenger RNA binding proteins is ATP dependent and temperature sensitive. J. Cell Biol. 159, 795–805 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Haggie, P.M., Verkman, A.S.: Diffusion of tricarboxylic acid cycle enzymes in the mitochondrial matrix in vivo. Evidence for restricted mobility of a multienzyme complex. J. Biol. Chem. 277, 40782–40788 (2002)

    Article  CAS  PubMed  Google Scholar 

  180. Dayel, M.J., Hom, E.F., Verkman, A.S.: Diffusion of green fluorescent protein in the aqueous-phase lumen of endoplasmic reticulum. Biophys. J. 76, 2843–2851 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Cole, N.B., Smith, C.L., Sciaky, N., Terasaki, M., Edidin, M., Lippincott-Schwartz, J.: Diffusional mobility of Golgi proteins in membranes of living cells. Science. 273, 797–801 (1996)

    Article  CAS  PubMed  Google Scholar 

  182. van Amerongen, H., Struve, W.S.: Polarized optical spectroscopy of chromoproteins. Meth. Enzymol. 246, 259–283 (1995)

    Article  CAS  Google Scholar 

  183. Jimenez, R., Dikshit, S.N., Bradforth, S.E., Fleming, G.R.: Electronic excitation transfer in the LH2 complex of Rhodobacter sphaeroides. J. Phys. Chem. 100, 6825–6834 (1996)

    Article  CAS  Google Scholar 

  184. Pullerits, T., Chachisvilis, M., Sundström, V.: Exciton delocalization length in the B850 antenna of Rhodobacter sphaeroides. J. Phys. Chem. 100, 10787–10792 (1996)

    Article  CAS  Google Scholar 

  185. Nagarajan, V., Johnson, E., Williams, J.C., Parson, W.W.: Femtosecond pump-probe spectroscopy of the B850 antenna complex of Rhodobacter sphaeroides at room temperature. J. Phys. Chem. B. 103, 2297–2309 (1999)

    Article  CAS  Google Scholar 

  186. Delrow, J.J., Heath, P.J., Fujimoto, B.S., Schurr, J.M.: Effect of temperature on DNA secondary structure in the absence and presence of 0.5 M tetramethylammonium chloride. Biopolymers. 45, 503–515 (1998)

    Article  CAS  PubMed  Google Scholar 

  187. Lakowicz, J.R., Knutson, J.R.: Hindered depolarizing rotations of perylene in lipid bilayers. Detection by lifetime-resolved fluorescence anisotropy measurements. Biochemistry. 19, 905–911 (1980)

    Article  CAS  PubMed  Google Scholar 

  188. Lakowicz, J.R., Maliwal, B.P.: Oxygen quenching and fluorescence depolarization of tyrosine residues in proteins. J. Biol. Chem. 258, 4794–4801 (1983)

    Article  CAS  PubMed  Google Scholar 

  189. Lakowicz, J.R., Maliwal, B.P., Cherek, H., Balter, A.: Rotational freedom of tryptophan residues in proteins and peptides. Biochemistry. 22, 1741–1752 (1983)

    Article  CAS  PubMed  Google Scholar 

  190. Hou, X., Richardson, S.J., Aguilar, M.I., Small, D.H.: Binding of amyloidogenic transthyretin to the plasma membrane alters membrane fluidity and induces neurotoxicity. Biochemistry. 44, 11618–11627 (2005)

    Article  CAS  PubMed  Google Scholar 

  191. Johnson, D.A.: C-terminus of a long alpha-neurotoxin is highly mobile when bound to the nicotinic acetylcholine receptor: a time-resolved fluorescence anisotropy approach. Biophys. Chem. 116, 213–218 (2005)

    Article  CAS  PubMed  Google Scholar 

  192. Fidy, J., Laberge, M., Kaposi, A.D., Vanderkooi, J.M.: Fluorescence line narrowing applied to the study of proteins. Biochim. Biophys. Acta. 1386, 331–351 (1998)

    Article  CAS  PubMed  Google Scholar 

  193. Nie, S., Zare, R.N.: Optical detection of single molecules. Ann. Rev. Biophys. Biomol. Struct. 26, 567–596 (1997)

    Article  CAS  Google Scholar 

  194. Xie, X.S., Trautman, J.K.: Optical studies of single molecules at room temperature. Ann. Rev. Phys. Chem. 49, 441–480 (1998)

    Article  CAS  Google Scholar 

  195. Moerner, W.E., Orrit, M.: Illuminating single molecules in condensed matter. Science. 283, 1670–1676 (1999)

    Article  CAS  PubMed  Google Scholar 

  196. Weiss, S.: Fluorescence spectroscopy of single biomolecules. Science. 283, 1676–1683 (1999)

    Article  CAS  PubMed  Google Scholar 

  197. Moerner, W.E., Kador, L.: Optical detection and spectroscopy of single molecule solids. Phys. Rev. Lett. 62, 2535–2538 (1989)

    Article  CAS  PubMed  Google Scholar 

  198. Moerner, W.E., Basche, T.: Optical spectroscopy of individual dopant molecules in solids. Angew. Chem. 105, 537–557 (1993)

    Article  CAS  Google Scholar 

  199. Kulzer, F., Kettner, R., Kummer, S., Basché, T.: Single molecule spectroscopy: spontaneous and light-induced frequency jumps. Pure & Appl. Chem. 69, 743–748 (1997)

    Article  CAS  Google Scholar 

  200. Goodwin, P.M., Ambrose, W.P., Keller, R.A.: Single-molecule detection in liquids by laser-induced fluorescence. Acc. Chem. Res. 29, 607–613 (1996)

    Article  CAS  Google Scholar 

  201. Nguyen, D.C., Keller, R.A., Jett, H., Martin, J.C.: Detection of single molecules of phycoerythrin in hydrodynamically focused flows by laser-induced fluorescence. Anal. Chem. 59, 2158–2161 (1987)

    Article  CAS  PubMed  Google Scholar 

  202. Peck, K., Stryer, L., Glazer, A.N., Mathies, R.A.: Single-molecule fluorescence detection: autocorrelation criterion and experimental realization with phycoerythrin. Proc. Natl. Acad. Sci. U. S. A. 86, 4087–4091 (1989)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Pohl, D.W., Denk, W., Lanz, M.: Optical stethoscopy: image recording with resolution l/20. Appl. Phys. Lett. 44, 651–653 (1984)

    Article  Google Scholar 

  204. Harootunian, A., Betzig, E., Isaacson, M., Lewis, A.: Super-resolution fluorescence near-field scanning optical microscopy. Appl. Phys. Lett. 49, 674–676 (1986)

    Article  CAS  Google Scholar 

  205. Betzig, E., Trautman, J.K.: Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science. 257, 189–195 (1992)

    Article  CAS  PubMed  Google Scholar 

  206. Betzig, E., Chichester, R.J., Lanni, F., Taylor, D.L.: Near-field fluorescence imaging of cytoskeletal actin. Bioimaging. 1, 129–135 (1993)

    Article  CAS  Google Scholar 

  207. Kopelman, R., Weihong, T., Birnbaum, D.: Subwavelength spectroscopy, exciton supertips and mesoscopic light-matter interactions. J. Lumin. 58, 380–387 (1994)

    Article  CAS  Google Scholar 

  208. Ha, T., Enderle, T., Ogletree, D.F., Chemla, D.S., Selvin, P.R., Weiss, S.: Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl. Acad. Sci. U. S. A. 93, 6264–6268 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Meixner, A.J., Kneppe, H.: Scanning near-field optical microscopy in cell biology and microbiology. Cell. Mol. Biol. 44, 673–688 (1998)

    CAS  PubMed  Google Scholar 

  210. Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., Davidson, M.W., Lippincott-Schwartz, J., Hess, H.F.: Imaging intracellular fluorescent proteins at nanometer resolution. Science. 313, 1642–1645 (2006)

    Article  CAS  PubMed  Google Scholar 

  211. Xie, X.S., Dunn, R.C.: Probing single molecule dynamics. Science. 265, 361–364 (1994)

    Article  CAS  PubMed  Google Scholar 

  212. Iwane, A.H., Funatsu, T., Harada, Y., Tokunaga, M., Ohara, O., Morimoto, S., Yanagida, T.: Single molecular assay of individual ATP turnover by a myosin-GFP fusion protein expressed in vitro. FEBS Lett. 407, 235–238 (1997)

    Article  CAS  PubMed  Google Scholar 

  213. Kalb, E., Engel, J., Tamm, L.K.: Binding of proteins to specific target sites in membranes measured by total internal reflection fluorescence microscopy. Biochemistry. 29, 1607–1613 (1990)

    Article  CAS  PubMed  Google Scholar 

  214. Poglitsch, C.L., Sumner, M.T., Thompson, N.L.: Binding of IgG to MoFc gamma RII purified and reconstituted into supported planar membranes as measured by total internal reflection fluorescence microscopy. Biochemistry. 30, 6662–6671 (1991)

    Article  CAS  PubMed  Google Scholar 

  215. Lieto, A.M., Cush, R.C., Thompson, N.L.: Ligand-receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy. Biophys. J. 85, 3294–3302 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Lieto, A.M., Thompson, N.L.: Total internal reflection with fluorescence correlation spectroscopy: nonfluorescent competitors. Biophys. J. 87, 1268–1278 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Sund, S.E., Swanson, J.A., Axelrod, D.: Cell membrane orientation visualized by polarized total internal reflection fluorescence. Biophys. J. 77, 2266–2283 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Geddes, C.D., Parfenov, A., Gryczynski, I., Lakowicz, J.R.: Luminescent blinking of gold nanoparticles. Chem. Phys. Lett. 380, 269–272 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Aslan, K., Lakowicz, J.R., Geddes, C.D.: Nanogold-plasmon-resonance-based glucose sensing. Anal. Biochem. 330, 145–155 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Stefani, F.D., Vasilev, K., Boccio, N., Stoyanova, N., Kreiter, M.: Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film. Phys. Rev. Lett. 94, 023005 (2005)

    Article  CAS  PubMed  Google Scholar 

  221. Wenger, J., Lenne, P.F., Popov, E., Rigneault, H., Dintinger, J., Ebbesen, T.W.: Single molecule fluorescence in rectangular nano-apertures. Opt. Express. 13, 7035–7044 (2005)

    Article  CAS  PubMed  Google Scholar 

  222. Lakowicz, J.R.: Radiative decay engineering: biophysical and biomedical applications. Anal. Biochem. 298, 1–24 (2002)

    Article  Google Scholar 

  223. Eigen, M., Rigler, R.: Sorting single molecules. Application to diagnostics and evolutionary biotechnology. Proc. Natl. Acad. Sci. U. S. A. 91, 5740–5747 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Nie, S., Chiu, D.T., Zare, R.N.: Probing individual molecules with confocal fluorescence microscopy. Science. 266, 1018–1021 (1994)

    Article  CAS  PubMed  Google Scholar 

  225. Nie, S., Chiu, D.T., Zare, R.N.: Real-time detection of single molecules in solution by confocal fluorescence microscopy. Angew. Chem. 67, 2849–2857 (1995)

    Article  CAS  Google Scholar 

  226. Edman, L., Mets, U., Rigler, R.: Conformational transitions monitored for single molecules in solution. Proc. Natl. Acad. Sci. U. S. A. 93, 6710–6715 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Macklin, J.J., Trautman, J.K., Harris, T.D., Brus, L.E.: Imaging and time-resolved spectroscopy of single molecules at an interface. Science. 272, 255–258 (1996)

    Article  CAS  Google Scholar 

  228. Conn, P.M.: Confocal Microscopy. Methods in Enzymology, vol. 307. Academic Press, San Diego (1999)

    Google Scholar 

  229. Yuste, R., Konnerth, A.: Imaging in Neuroscience and Development: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2000)

    Google Scholar 

  230. Yuste, R.: Fluorescence microscopy today. Nature Meth. 2, 902–904 (2005)

    Article  CAS  Google Scholar 

  231. Lichtman, J.W., Conchello, J.-A.: Fluorescence microscopy. Nat. Methods. 2, 910–919 (2005)

    Article  CAS  PubMed  Google Scholar 

  232. Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy. Nat. Methods. 2, 920–931 (2005)

    Article  CAS  PubMed  Google Scholar 

  233. Helmchen, F., Denk, W.: Deep tissue two-photon microscopy. Nat. Methods. 2, 932–940 (2005)

    Article  CAS  PubMed  Google Scholar 

  234. Hell, S.W., Wichmann, J.: Breaking the diffraction resolution by stimulated emission: stimulated emission depletion microscopy. Opt. Lett. 19, 780–782 (1994)

    Article  CAS  PubMed  Google Scholar 

  235. Hell, S.W.: Toward fluorescence nanoscopy. Nat. Biotech. 21, 1347–1355 (2003)

    Article  CAS  Google Scholar 

  236. Hell, S.W., Jakobs, S., Kastrup, L.: Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Appl. Phys. A Mater. Sci. Process. 77, 859–860 (2003)

    Article  CAS  Google Scholar 

  237. Hofmann, M., Eggeling, C., Jakobs, S., Hell, S.W.: Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl. Acad. Sci. U. S. A. 102, 17565–17569 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Westphal, V., Hell, S.W.: Nanoscale resolution in the focal plane of an optical microscope. Phys. Rev. Lett. 94, 143903 (2005)

    Article  PubMed  Google Scholar 

  239. Hell, S.W.: Far-field optical nanoscopy. Science. 316, 1153–1158 (2007)

    Article  CAS  PubMed  Google Scholar 

  240. Lu, H.P., Xie, X.S.: Single-molecule spectral fluctuations at room temperature. Nature. 385, 143–146 (1997)

    Article  CAS  Google Scholar 

  241. Wennmalm, S., Edman, L., Rigler, R.: Conformational fluctuations in single DNA molecules. Proc. Natl. Acad. Sci. U. S. A. 94, 10641–10646 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Michalet, X., Weiss, S., Jäger, M.: Single-molecule fluorescence studies of protein folding and conformational dynamics. Chem. Rev. 106, 1785–1813 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Peterman, E.J., Sosa, H., Moerner, W.E.: Single-molecule fluorescence spectroscopy and microscopy of biomolecular motors. Ann. Rev. Phys. Chem. 55, 79–96 (2004)

    Article  CAS  Google Scholar 

  244. Ohmachi, M., Komori, Y., Iwane, A.H., Fujii, F., Jin, T., Yanagida, T.: Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V. Proc. Natl. Acad. Sci. U. S. A. 109, 5294–5298 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Watanabe, T.M., Yanagida, T., Iwane, A.H.: Single molecular observation of self-regulated kinesin motility. Biochemistry. 49, 4654–4661 (2010)

    Article  CAS  PubMed  Google Scholar 

  246. Park, H., Toprak, E., Selvin, P.R.: Single-molecule fluorescence to study molecular motors. Q. Rev. Biophys. 40, 87–111 (2007)

    Article  CAS  PubMed  Google Scholar 

  247. Lu, H.P., Xun, L., Xie, X.S.: Single-molecule enzymatic dynamics. Science. 282, 1877–1882 (1998)

    Article  CAS  PubMed  Google Scholar 

  248. Deniz, A.A., Laurence, T.A., Beligere, G.S., Dahan, M., Martin, A.B., Chemla, D.S., Dawson, P.E., Schultz, P.G., Weiss, S.: Single-molecule protein folding: diffusion fluorescence resonance energy transfer studies of the denaturation of chymotrypsin inhibitor 2. Proc. Natl. Acad. Sci. U. S. A. 97, 5179–5184 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Talaga, D.S., Lau, W.L., Roder, H., Tang, J., Jia, Y., DeGrado, W.F., Hochstrasser, R.M.: Dynamics and folding of single two-stranded coiled-coil peptides studied by fluorescent energy transfer confocal microscopy. Proc. Natl. Acad. Sci. U. S. A. 97, 13021–13026 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Zhuang, X., Bartley, L.E., Babcock, H.P., Russell, R., Ha, T., Herschlag, D., Chu, S.: A single-molecule study of RNA catalysis and folding. Science. 288, 2048–2051 (2000)

    Article  CAS  PubMed  Google Scholar 

  251. Zhuang, X., Rief, M.: Single-molecule folding. Curr. Opin. Struct. Biol. 13, 88–97 (2003)

    Article  CAS  PubMed  Google Scholar 

  252. Schuler, B., Lipman, E.Å., Eaton, W.A.: Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature. 419, 743–747 (2002)

    Article  CAS  PubMed  Google Scholar 

  253. Chung, H.S., Cellmer, T., Louis, J.M., Eaton, W.A.: Measuring ultrafast protein folding rates from photon-by-photon analysis of single molecule fluorescence trajectories. Chem. Phys. 422, 229–237 (2013)

    Article  CAS  PubMed  Google Scholar 

  254. Banerjee, P.R., Deniz, A.A.: Shedding light on protein folding landscapes by single-molecule fluorescence. Chem. Soc. Rev. 43, 1172–1188 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Takei, Y., Iizuka, R., Ueno, T., Funatsu, T.: Single-molecule observation of protein folding in symmetric GroEL-(GroES)2 complexes. J. Biol. Chem. 287, 41118–41125 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Trexler, A.J., Rhoades, E.: Function and dysfunction of a-synuclein: probing conformational changes and aggregation by single molecule fluorescence. Mol. Neurobiol. 47, 622–631 (2013)

    Article  CAS  PubMed  Google Scholar 

  257. Chung, H.S., Eaton, W.A.: Protein folding transition path times from single molecule FRET. Curr. Opin. Chem. Biol. 48, 30–39 (2018)

    CAS  Google Scholar 

  258. Hoffer, N.Q., Woodside, M.T.: Probing microscopic conformational dynamics in folding reactions by measuring transition paths. Curr. Opin. Chem. Biol. 53, 68–74 (2019)

    Article  CAS  PubMed  Google Scholar 

  259. Makarov, D.E.: Barrier crossing dynamics from single-molecule measurements. J. Phys. Chem. B. 125, 2467–2476 (2021)

    Article  CAS  PubMed  Google Scholar 

  260. Willets, K.A., Callis, P.R., Moerner, W.E.: Experimental and theoretical investigations of environmentally sensitive single-molecule fluorophores. J. Phys. Chem. B. 108, 10465–10473 (2004)

    Article  CAS  Google Scholar 

  261. Betzig, E., Chichester, R.J.: Single molecules observed by near-field scanning optical microscopy. Science. 262, 1422–1425 (1993)

    Article  CAS  PubMed  Google Scholar 

  262. Magde, D., Elson, E., Webb, W.W.: Thermodynamic fluctuations in a reacting system - measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29, 705–708 (1972)

    Article  CAS  Google Scholar 

  263. Magde, D., Elson, E.L., Webb, W.W.: Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers. 13, 29–61 (1974)

    Article  CAS  PubMed  Google Scholar 

  264. Elson, E.L., Magde, D.: Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers. 13, 1–27 (1974)

    Article  CAS  Google Scholar 

  265. Elson, E.: Fluorescence correlation spectroscopy: past, present, future. Biophys. J. 101, 2855–2870 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Webb, W.W.: Fluorescence correlation spectroscopy: inception, biophysical experimentations and prospectus. Appl. Opt. 40, 3969–3983 (2001)

    Article  CAS  PubMed  Google Scholar 

  267. Fitzpatrick, J.A., Lillemeier, B.F.: Fluorescence correlation spectroscopy: linking molecular dynamics to biological function in vitro and in situ. Curr. Opin. Struct. Biol. 21, 650–660 (2011)

    Article  CAS  PubMed  Google Scholar 

  268. Tian, Y., Martinez, M.M., Pappas, D.: Fluorescence correlation spectroscopy: a review of biochemical and microfluidic applications. Appl. Spectrosc. 65, 115A–124A (2011)

    Article  CAS  PubMed  Google Scholar 

  269. Bevington, P.R., Robinson, D.K.: Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, Boston (2003)

    Google Scholar 

  270. Kubo, R.: The fluctuation-dissipation theorem. Rept. Progr. Theor. Phys. 29, 255–284 (1966)

    Article  CAS  Google Scholar 

  271. Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II: Nonequilibrium Statistical Mechanics. Springer, Berlin (1985)

    Book  Google Scholar 

  272. Parson, W.W., Warshel, A.: A density-matrix model of photosynthetic electron transfer with microscopically estimated vibrational relaxation times. Chem. Phys. 296, 201–206 (2004)

    Article  CAS  Google Scholar 

  273. Harp, G.D., Bern, B.J.: Time-correlation functions, memory functions, and molecular dynamics. Phys. Rev. A. 2, 975–996 (1970)

    Article  Google Scholar 

  274. Hess, S.T., Webb, W.W.: Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophys. J. 83, 2300–2317 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Maiti, S., Haupts, U., Webb, W.W.: Fluorescence correlation spectroscopy: diagnostics for sparse molecules. Proc. Natl. Acad. Sci. U. S. A. 94, 11753–11757 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Jakobs, D., Sorkalla, T., Häberlein, H.: Ligands for fluorescence correlation spectroscopy on g protein-coupled receptors. Curr. Med. Chem. 19, 4722–4730 (2012)

    Article  CAS  PubMed  Google Scholar 

  277. Widengren, J., Rigler, R.: Fluorescence correlation spectroscopy as a tool to investigate chemical reactions in solutions and on cell surfaces. Cell. Mol. Biol. 44, 857–879 (1998)

    CAS  PubMed  Google Scholar 

  278. van den Berg, P.A., Widengren, J., Hink, M.A., Rigler, R., Visser, A.J.: Fluorescence correlation spectroscopy of flavins and flavoenzymes: photochemical and photophysical aspects. Spectrochim. Acta A. 57, 2135–2144 (2001)

    Article  Google Scholar 

  279. Haupts, U., Maiti, S., Schwille, P., Webb, W.W.: Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 95, 13573–13578 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Schenk, A., Ivanchenko, S., Röcker, C., Wiedenmann, J., Nienhaus, G.U.: Photodynamics of red fluorescent proteins studied by fluorescence correlation spectroscopy. Biophys. J. 86, 384–394 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Chattopadhyay, K., Saffarian, S., Elson, E.L., Frieden, C.: Measuring unfolding of proteins in the presence of denaturant using fluorescence correlation spectroscopy. Biophys. J. 88, 1413–1422 (2005)

    Article  CAS  PubMed  Google Scholar 

  282. Sanchez, S.A., Gratton, E.: Lipid-protein interactions revealed by two-photon microscopy and fluorescence correlation spectroscopy. Acc. Chem. Res. 38, 469–477 (2005)

    Article  CAS  PubMed  Google Scholar 

  283. Felekyan, S., Sanabria, H., Kalinin, S., Kühnemuth, R., Seidel, C.A.: Analyzing Förster resonance energy transfer with fluctuation algorithms. Meth. Enzymol. 519, 39–85 (2013)

    Article  CAS  Google Scholar 

  284. Schwille, P., Meyer-Almes, F.J., Rigler, R.: Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys. J. 72, 1878–1886 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Kettling, U., Koltermann, A., Schwille, P., Eigen, M.: Real-time enzyme kinetics of restriction endonuclease EcoR1 monitored by dual-color fluorescence cross-correlation spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 95, 1416–1420 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Bieschke, J., Giese, A., Schulz-Schaeffer, W., Zerr, I., Poser, S., Eigen, M., Kretzschmar, H.: Ultrasensitive detection of pathological prion protein aggregates by dual-color scanning for intensely fluorescent targets. Proc. Natl. Acad. Sci. U. S. A. 97, 5468–5473 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Jahnz, M., Schwille, P.: An ultrasensitive site-specific DNA recombination assay based on dual-color fluorescence cross-correlation spectroscopy. Nucleic Acids Res. 33, e60 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  288. Collini, M., Caccia, M., Chirico, G., Barone, F., Dogliotti, E., Mazzei, F.: Two-photon fluorescence cross-correlation spectroscopy as a potential tool for high-throughput screening of DNA repair activity. Nucleic Acids Res. 33, e165 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  289. Chen, Y., Müller, J.D., So, P.T.C., Gratton, E.: The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys. J. 77, 553–567 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Huang, B., Perroud, T.D., Zare, R.N.: Photon counting histogram: one-photon excitation. ChemPhysChem. 5, 1523–1531 (2004)

    Article  CAS  PubMed  Google Scholar 

  291. Perroud, T.D., Bokoch, M.P., Zare, R.N.: Cytochrome c conformations resolved by the photon counting histogram: watching the alkaline transition with single-molecule sensitivity. Proc. Natl. Acad. Sci. U. S. A. 102, 17570–17575 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Siebrand, W.: Radiationless transitions in polyatomic molecules. I. Calculation of Franck-Condon factors. J. Chem. Phys. 46, 440–447 (1967)

    Article  CAS  Google Scholar 

  293. El-Sayed, M.A.: Spin-orbit coupling and the radiationless processes in nitrogen heterocycles. J. Chem. Phys. 38, 2834–2838 (1963)

    Article  CAS  Google Scholar 

  294. Baba, M.: Intersystem crossing in the 1np* and 1pp* states. J. Phys. Chem. A. 115, 9514–9519 (2011)

    Article  CAS  PubMed  Google Scholar 

  295. Soto, J., Otero, J.C.: Conservation of El-Sayed's rules in the photolysis of phenyl azide: two independent decomposition doorways for alternate direct formation of triplet and singlet phenylnitrene. J. Phys. Chem. A. 123, 9053–9060 (2019)

    Article  CAS  PubMed  Google Scholar 

  296. El-Sayed, M.A.: The triplet state: its radiative and nonradiative properties. Acc. Chem. Res. 1, 8–16 (1968)

    Article  CAS  Google Scholar 

  297. Siebrand, W.: Radiationless transitions in polyatomic molecules. II. Triplet-ground-state transitions in aromatic hydrocarbons. J. Chem. Phys. 47, 2411–2422 (1967)

    Article  CAS  Google Scholar 

  298. McGlynn, S.P., Azumi, T., Kinoshita, M.: Molecular Spectroscopy of the Triplet State. Prentice Hall, Englewood Cliffs NJ (1969)

    Google Scholar 

  299. Henry, B.R., Siebrand, W.: Spin-orbit coupling in aromatic hydrocarbons. Analysis of nonradiative transitions between singlet and triplet states in benzene and naphthalene. J. Chem. Phys. 54, 1072–1085 (1971)

    Article  CAS  Google Scholar 

  300. Lawetz, V., Orlandi, G., Siebrand, W.: Theory of intersystem crossing in aromatic hydrocarbons. J. Chem. Phys. 56, 4058–4072 (1972)

    Article  CAS  Google Scholar 

  301. Richards, W.G., Trivedi, H.P., Cooper, D.L.: Spin-orbit Coupling in Molecules. Clarendon Press, Oxford (1981)

    Google Scholar 

  302. Penfold, T.J., Gindensperger, E., Marian, C.M.: Spin-vibronic mechanism for intersystem crossing. Chem. Rev. 118, 6975–7025 (2018)

    Article  CAS  PubMed  Google Scholar 

  303. Born, R., Burda, C., Senn, P., Wirz, J.: Transient absorption spectra and reaction kinetics of singlet phenylnitrene and its 2,4,6-tribromo derivative in solution. J. Am. Chem. Soc. 119, 5061–5062 (1997)

    Article  CAS  Google Scholar 

  304. Shipman, L.: Oscillator and dipole strengths for chlorophyll and related molecules. Photochem. Photobiol. 26, 287–292 (1977)

    Article  CAS  Google Scholar 

  305. Takiff, L., Boxer, S.G.: Phosphorescence spectra of bacteriochlorophylls. J. Am. Chem. Soc. 110, 4425–4426 (1988)

    Article  CAS  Google Scholar 

  306. Shuvalov, V.A., Parson, W.W.: Energies and kinetics of radical pairs involving bacteriochlorophyll and bacteriopheophytin in bacterial reaction centers. Proc. Natl. Acad. Sci. U. S. A. 78, 957–961 (1981)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Woodbury, N.W., Parson, W.W.: Nanosecond fluorescence from isolated reaction centers of Rhodopseudomonas sphaeroides. Biochim. Biophys. Acta. 767, 345–361 (1984)

    Article  CAS  PubMed  Google Scholar 

  308. Booth, P.J., Crystall, B., Ahmad, I., Barber, J., Porter, G., Klug, D.R.: Observation of multiple radical pair states in photosystem 2 reaction centers. Biochemistry. 30, 7573–7586 (1991)

    Article  CAS  PubMed  Google Scholar 

  309. Ogrodnik, A., Keupp, W., Volk, M., Auermeier, G., Michel-Beyerle, M.E.: Inhomogeneity of radical pair energies in photosynthetic reaction centers revealed by differences in recombination diynamics of P+HA when detected in delayed emission and absorption. J. Phys. Chem. 98, 3432–3439 (1994)

    Article  CAS  Google Scholar 

  310. Woodbury, N.W., Peloquin, J.M., Alden, R.G., Lin, X., Taguchi, A.K.W., Williams, J.C., Allen, J.P.: Relationship between thermodynamics and mechanism during photoinduced charge separation in reaction centers from Rhodobacter sphaeroides. Biochemistry. 33, 8101–8112 (1994)

    Article  CAS  PubMed  Google Scholar 

  311. Che, A., Morrison, I.E., Pan, R., Cherry, R.J.: Restriction by ankyrin of band 3 rotational mobility in human erythrocyte membranes and reconstituted lipid vesicles. Biochemistry. 36, 9588–9595 (1997)

    Article  CAS  PubMed  Google Scholar 

  312. Marcus, R.A.: On the theory of oxidation-reduction reactions involving electron transfer I. J. Chem. Phys. 24, 966–978 (1956)

    Article  CAS  Google Scholar 

  313. Marcus, R.A.: Theory of oxidation-reduction reactions involving electron transfer. Part 4. A statistical-mechanical basis for treating contributions from the solvent, ligands and inert salt. Disc. Farad. Soc. 29, 21–31 (1960)

    Article  Google Scholar 

  314. Marcus, R.A.: Electron transfer reactions in chemistry. Theory and experiment. In: Bendall, D.S. (ed.) Protein Electron Transfer, pp. 249–272. BIOS Scientific Publishers, Oxford (1996)

    Google Scholar 

  315. Warshel, A.: Dynamics of reactions in polar solvents. Semiclassical trajectory studies of electron-transfer and proton-transfer reactions. J. Phys. Chem. 86, 2218–2224 (1982)

    Article  CAS  Google Scholar 

  316. Hwang, J.-K., Warshel, A.: Microscopic examination of free-emergy relationships for electron transfer in polar solvents. J. Am. Chem. Soc. 109, 715–720 (1987)

    Article  CAS  Google Scholar 

  317. Parson, W.W.: Reorganization energies, entropies, and free energy surfaces for electron transfer. J. Phys. Chem. B. 125, 7940–7945 (2021)

    Article  CAS  PubMed  Google Scholar 

  318. Miller, J.R., Calcaterra, L.T., Closs, G.L.: Intramolecular long-distance electron transfer in radical anions. The effects of free energy and solvent on the reaction rates. J. Am. Chem. Soc. 106, 3047–3049 (1984)

    Article  CAS  Google Scholar 

  319. Gould, I.R., Ege, D., Mattes, S.L., Farid, S.: Return electron transfer within geminate radical pairs. Observation of the Marcus inverted region. J. Am. Chem. Soc. 109, 3794–3796 (1987)

    Article  CAS  Google Scholar 

  320. Mataga, N., Chosrowjan, H., Shibata, Y., Yoshida, N., Osuka, A., Kikuzawa, T., Okada, T.: First unequivocal observation of the whole bell-shaped energy gap law in intramolecular charge separation from S2 excited state of directly linked porphyrin-imide dyads and its solvent-polarity dependencies. J. Am. Chem. Soc. 123, 12422–12423 (2001)

    Article  CAS  PubMed  Google Scholar 

  321. Rehm, D., Weller, A.: Kinetics of fluorescence quenching by electron and H-atom transfer. Isr. J. Chem. 8, 259–271 (1970)

    Article  CAS  Google Scholar 

  322. Farid, S., Dinnocenzo, J.P., Merkel, P.B., Young, R.H., Shukla, D., Guirado, G.: Reexamination of the Rehm-Weller data set reveals electron transfer quenching that follows a Sandros-Boltzmann dependence on the free energy. J. Am. Chem. Soc. 133, 11580–11587 (2011)

    Article  CAS  PubMed  Google Scholar 

  323. Callis, P.R., Petrenko, A., Muino, P.L., Tusell, J.R.: Ab initio prediction of tryptophan fluorescence quenching by protein electric field enabled electron transfer. J. Phys. Chem. B. 111, 10335–10339 (2007)

    Article  CAS  PubMed  Google Scholar 

  324. Tusell, J.R., Callis, P.R.: Simulations of tryptophan fluorescence dynamics during folding of the villin headpiece. J. Phys. Chem. B. 116, 2586–2594 (2012)

    Article  CAS  PubMed  Google Scholar 

  325. Warshel, A., Chu, Z.-T., Parson, W.W.: Dispersed-polaron simulations of electron transfer in photosynthetic reaction centers. Science. 246, 112–116 (1989)

    Article  CAS  PubMed  Google Scholar 

  326. Ulstrup, J., Jortner, J.: The effect of intramolecular quantum modes on free energy relationships for electron transfer reactions. J. Chem. Phys. 63, 4358–4368 (1975)

    Article  CAS  Google Scholar 

  327. Closs, G.L., Calcaterra, L.T., Green, N.J., Penfield, K.W., Miller, J.R.: Distance, stereoelectronic effects, and the Marcus inverted region in intramolecular electron transfer in organic radical anions. J. Phys. Chem. 90, 3673–3683 (1986)

    Article  CAS  Google Scholar 

  328. Closs, G.L., Miller, J.R.: Intramolecular long-distance electron transfer in organic molecules. Science. 240, 440–447 (1988)

    Article  CAS  PubMed  Google Scholar 

  329. Heitele, H., Pöllinger, F., Häberle, T., Michel-Beyerle, M.E., Staab, H.A.: Energy gap and temperature dependence of photoinduced electron transfer in porphyrin-quinone cyclophanes. J. Phys. Chem. 98, 7402–7410 (1994)

    Article  CAS  Google Scholar 

  330. Häberle, T., Hirsch, J., Pöllinger, F., Heitele, H., et al.: Ultrafast charge separation and driving force dependence in cyclophane-bridged Zn-porphyrin-quinone molecules. J. Phys. Chem. 100, 18269–18274 (1996)

    Article  Google Scholar 

  331. Parson, W.W.: Temperature dependence of the rate of intramolecular electron transfer. J. Phys. Chem. B. 122, 8824–8833 (2018)

    Article  CAS  PubMed  Google Scholar 

  332. Moser, C.C., Dutton, P.L.: Engineering protein structure for electron transfer function in photosynthetic reaction centers. Biochim. Biophys. Acta. 1101, 171–176 (1992)

    Article  CAS  PubMed  Google Scholar 

  333. Ghorai, P.K., Matyushov, D.V.: Solvent reorganization entropy of electron transfer in polar solvents. J. Phys. Chem. A. 110, 8857–8863 (2006)

    Article  CAS  PubMed  Google Scholar 

  334. Parson, W.W.: Generalizing the Marcus equation. J. Chem. Phys. 152, 184106/1–184106/6 (2020)

    Article  Google Scholar 

  335. Parson, W.W.: Vibrational relaxations and dephasing in electron-transfer reactions. J. Phys. Chem. B. 120, 11412–11418 (2016)

    Article  CAS  PubMed  Google Scholar 

  336. Parson, W.W.: Effects of free energy and solvent on rates of intramolecular electron transfer in organic radical anions. J. Phys. Chem. A. 121, 7297–7306 (2017)

    Article  CAS  PubMed  Google Scholar 

  337. Parson, W.W.: Electron-transfer dynamics in a Zn-porphyrin-quinone cyclophane: effects of solvent, vibrational relaxations, and conical intersections. J. Phys. Chem. B. 122, 3854–3863 (2018)

    Article  CAS  PubMed  Google Scholar 

  338. O’Regan, B., Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 353, 737–740 (1991)

    Article  Google Scholar 

  339. Grätzel, M.: Photoelectrochemical cells. Nature. 414, 338–344 (2001)

    Article  PubMed  Google Scholar 

  340. Durrant, J.R., Tachibana, Y., Durrant, J.R., Mercer, I., Moser, J.E., Grätzel, M., Klug, D.R.: The excitation wavelength and solvent dependence of the kinetics of electron injection in Ru(dcbpy)2 (NCS)2 sensitized nanocrystalline TiO2 films. Z. Phys. Chem. 212, 93–98 (1999)

    Article  CAS  Google Scholar 

  341. Kovalsky, A., McCleese, C., Lin, W.C., Goldberg, S., Kolodziej, C., Burda, C.: Comparing titania-based architectures for perovskite solar cells: a combined optical-electronic loss analysis. Small. Methods. 2, 1700275/1-13 (2018)

    Google Scholar 

  342. Hu, C., White, R.M.: Solar Cells: From Basic to Advanced Systems. McGraw-Hill, New York (1983)

    Google Scholar 

  343. Sinton, R.A., Cuevas, A.: Contactless determination of current-voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data. Appl. Phys. Lett. 69, 2510–2512 (1996)

    Article  CAS  Google Scholar 

  344. Augusto, A., Herasimenka, S.Y., King, R.R., Bowden, S.G., Honsberg, C.: Analysis of the recombination mechanisms of a silicon solar cell with low bandgap-voltage offset. J. Appl. Phys. 121, 205704 (2017)

    Article  Google Scholar 

  345. Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)

    Article  CAS  Google Scholar 

  346. Tiedje, T., Yablonovich, E., Cody, G.D., Brooks, B.G.: Limiting efficiency of silicon solar cells. IEEE Trans. Electron Devices. 31, 711–716 (1984)

    Article  Google Scholar 

  347. Peet, J., Heeger, A.J., Bazan, G.C.: “Plastic” solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation. Acc. Chem. Res. 42, 1700–1708 (2009)

    Article  CAS  PubMed  Google Scholar 

  348. Huo, L.J., Liu, T., Sun, X.B., Cai, Y.H., Heeger, A.J., Sun, Y.M.: Single-junction organic solar cells based on a novel wide-bandgap polymer with efficiency of 9.7%. Adv. Mater. 27, 2938–2944 (2015)

    Article  CAS  PubMed  Google Scholar 

  349. Beard, M.C., Ellingson, R.J.: Multiple exciton generation in semiconductor nanocrystals: toward efficient solar energy conversion. Laser Photonics Rev. 2, 377–399 (2008)

    Article  CAS  Google Scholar 

  350. Beard, M.C., Midgett, A.G., Hanna, M.C., Luther, J.M., Hughes, B.K., Nozik, A.J.: Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion. Nano Lett. 10, 3019–3027 (2010)

    Article  CAS  PubMed  Google Scholar 

  351. Nozik, A.J., Beard, M.C., Luther, J.M., Law, M., Ellingson, R.J., Johnson, J.C.: Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 110, 6873–6890 (2010)

    Article  CAS  PubMed  Google Scholar 

  352. Lv, H.J., Wang, C.C., Li, G.C., Burke, R., Krauss, T.D., Gao, Y.L., Eisenberg, R.: Semiconductor quantum dot-sensitized rainbow photocathode for effective photoelectrochemical hydrogen generation. Proc. Natl. Acad. Sci. U. S. A. 114, 11297–11302 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Article  CAS  PubMed  Google Scholar 

  354. Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science. 338, 643–647 (2012)

    Article  CAS  PubMed  Google Scholar 

  355. Zhang, W., Eperon, G.E., Snaith, H.J.: Metal halide perovskites for energy applications. Nat. Energy. 1, 16048 (2016)

    Article  CAS  Google Scholar 

  356. Duong, T., Wu, Y.L., Shen, H., Peng, J., et al.: Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv. Energy Mater. 7, 1700228 (2017)

    Article  Google Scholar 

  357. Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Grätzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 499, 316–319 (2013)

    Article  CAS  PubMed  Google Scholar 

  358. Stranks, S.D., Snaith, H.J.: Metal-halide perovskites for photovoltaic and light-emitting devices. Nature Nanotech. 10, 391–402 (2015)

    Article  CAS  Google Scholar 

  359. Zhao, B., Bai, S., Kim, V., Lamboll, R., et al.: High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes. Nat. Photonics. 12, 783–789 (2018)

    Article  CAS  Google Scholar 

  360. Uoyama, H., Goushi, K., Shizu, K., Nomura, H., Adachi, C.: Highly efficient organic light-emitting diodes from delayed fluorescence. Nature. 492, 234–238 (2012)

    Article  CAS  PubMed  Google Scholar 

  361. Martinez, C.R., Iverson, B.L.: Rethinking the term “pi-stacking”. Chem. Sci. 3, 2191–2201 (2012)

    Article  CAS  Google Scholar 

  362. Sinnokrot, M.O., Valeev, E.F., Sherrill, C.D.: Estimates of the ab-initio limit for pi-pi interactions: the benzene dimer. J. Am. Chem. Soc. 124, 10887–10893 (2002)

    Article  CAS  PubMed  Google Scholar 

  363. Luo, J., Xie, Z., Lam, J.W.Y., Cheng, L., et al.: Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentphenylsilole. Chem. Commun. 18, 1740–1741 (2001)

    Article  Google Scholar 

  364. Dong, Y., Liu, J.C., Qin, J., Liu, Z., Li, Z., Tang, B.Z., Sun, J., Kwok, H.S.: Aggregation-induced emissions of tetraphenylethene derivatives and their utilities as chemical vapor sensors and organic light-emitting dipdes. Appl. Phys. Lett. 91, 011111/1-3 (2007)

    Article  Google Scholar 

  365. Hong, Y., Lam, J.W.Y., Tang, B.Z.: Aggregation-induced emission: phenomenon, mechanism and aplications. Chem. Commun. 2009, 4332–4353 (2009)

    Article  Google Scholar 

  366. Hong, Y., Lam, J.W.Y., Tang, B.Z.: Aggregation-induced emission. Chem. Soc. Rev. 40, 5361–5388 (2011)

    Article  CAS  PubMed  Google Scholar 

  367. Mei, J., Leung, N.L.C., Kwok, R.T.K., Lam, J.W.Y., Tang, B.Z.: Aggregation-induced emission: together we shine, united we soar. Chem. Rev. 115, 11718–11940 (2015)

    Article  CAS  PubMed  Google Scholar 

  368. Turro, N.J., Bolt, J.D., Kuroda, M., Tabushi, I.: A study of the kinetics of inclusion of halonaphthalenes with b-cyclodextrin via time-correlated phosphorescence. Photochem. Photobiol. 35, 69–72 (1982)

    Article  CAS  Google Scholar 

  369. Wu, T.M., Huang, J., Yan, Y.: From aggregation-induced emission to organic room temperature phosphorescence through suppression of molecular vibration. Cell Rep. Phys. Sci. 3, 100771/1-30 (2022)

    Google Scholar 

  370. Hu, J.-J., Jiang, W., Lou, X., Xia, F.: Target-triggering, signal-amplified chemo/bio-sensors based on aggregation-induced luminogens. Cell Rep. Phys. Sci. 3, 100743/1-15 (2022)

    Google Scholar 

  371. Khandare, D.G., Joshi, H., Bannerjeee, M., Majik, M.S., Chatterjee, A.: An aggregation-induced emission based on “turn-on” fluorescent chemodosimeter for the selective detection of Pb2+ ions. RSC Adv. 4, 47076–47080 (2014)

    Article  CAS  Google Scholar 

  372. Yu, Y., Qin, A., Feng, C., Lu, P., Ng, K.M., Luo, K.Q., Tang, B.Z.: An amine-reactive tetraphenylethylene derivative for protein detection in SDS-PAGE. Analyst. 137, 5592–5596 (2012)

    Article  CAS  PubMed  Google Scholar 

  373. Han, T., Feng, X., Tong, B., Shi, J., Chen, L., Zhi, J., Dong, Y.A.: Novel “turn-on” fluroescent chemosensor for the selective detection of Al3+ based on aggregation-induced emission. Chem. Commun. 48, 416–418 (2012)

    Article  CAS  Google Scholar 

  374. Peng, L., Zhou, Z., Wang, X., Wei, R., Li, K., Xiang, Y., Tong, A.: A ratiometric fluorescent chemosensor for Al3+ in aqueous solution based on aggregation-induced emission and its application in live-cell imaging. Anal. Chim. Acta. 829, 54–59 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parson, W.W., Burda, C. (2023). Fluorescence. In: Modern Optical Spectroscopy. Springer, Cham. https://doi.org/10.1007/978-3-031-17222-9_5

Download citation

Publish with us

Policies and ethics