Abstract
Anonymous authentication primitives, e.g., group or ring signatures, allow one to realize privacy-preserving data collection applications, as they strike a balance between authenticity of data being collected and privacy of data providers. At PKC 2021, Diaz and Lehmann defined group signatures with User-Controlled Linkability (UCL) and provided an instantiation based on BBS+ signatures. In a nutshell, a signer of a UCL group signature scheme can link any of her signatures: linking evidence can be produced at signature time, or after signatures have been output, by providing an explicit linking proof.
In this paper, we introduce Ring Signatures with User-Controlled Linkability (RS-UCL). Compared to group signatures with user-controlled linkability, RS-UCL require no group manager and can be instantiated in a completely decentralized manner. We also introduce a variation, User Controlled and Autonomous Linkability (RS-UCAL), which gives the user full control of the linkability of their signatures.
We provide a formal model for both RS-UCL and RS-UCAL and introduce a compiler that can upgrade any ring signature scheme to RS-UCAL. The compiler leverages a new primitive we call Anonymous Key Randomizable Signatures (AKRS)—a signature scheme where the verification key can be randomized—that can be of independent interest. We also provide different instantiations of AKRS based on Schnorr signatures and on lattices. Finally, we show that an AKRS scheme can additionally be used to construct an RS-UCL scheme.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Attema, T., Cramer, R., Fehr, S.: Compressing proofs of k-out-of-n partial knowledge. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp. 65–91. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8_3
Abe, M., Chow, S.S.M., Haralambiev, K., Ohkubo, M.: Double-trapdoor anonymous tags for traceable signatures. Int. J. Inf. Secur. 12(1), 19–31 (2013)
Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: ACM CCS (2004)
Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short accountable ring signatures based on DDH. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 243–265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6_13
Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully dynamic group signatures. In: ACNS (2016)
Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N.P., Warinschi, B.: Anonymous attestation with user-controlled linkability. Int. J. Inf. Secur. 12(3), 219–249 (2013)
Backes, M., Hanzlik, L., Kluczniak, K., Schneider, J.: Signatures with flexible public key: introducing equivalence classes for public keys. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 405–434. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_14
Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_38
Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_11
Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation using the strong Diffie Hellman assumption revisited. In: Franz, M., Papadimitratos, P. (eds.) Trust 2016. LNCS, vol. 9824, pp. 1–20. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45572-3_1
Camenisch, J., Drijvers, M., Lehmann, A.: Universally composable direct anonymous attestation. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 234–264. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49387-8_10
Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052252
Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_22
Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_3
Diaz, J., Lehmann, A.: Group signatures with user-controlled and sequential linkability. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12710, pp. 360–388. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75245-3_14
Fraser, A., Garms, L., Lehmann, A.: Selectively linkable group signatures—stronger security and preserved verifiability. In: Conti, M., Stevens, M., Krenn, S. (eds.) CANS 2021. LNCS, vol. 13099, pp. 200–221. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92548-2_11
Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_9
Garms, L., Lehmann, A.: Group signatures with selective linkability. In: PKC (2019)
Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)
Hwang, J.Y., Lee, S., Chung, B.-H., Cho, H. S., Nyang, D.: Short group signatures with controllable linkability. In: Workshop on Lightweight Security & Privacy: (LightSec) (2011)
Hwang, J.Y., Lee, S., Chung, B.-H., Cho, H.S., Nyang, D.H.: Group signatures with controllable linkability for dynamic membership. Inf. Sci. 222, 761–778 (2013)
Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_34
Libert, B., Joye, M.: Group signatures with message-dependent opening in the standard model. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 286–306. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9_15
Libert, B., Mouhartem, F., Nguyen, K.: A lattice-based group signature scheme with message-dependent opening. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 137–155. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_8
Libert, B., Peters, T., Qian, C.: Logarithmic-size ring signatures with tight security from the DDH assumption. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS, vol. 11099, pp. 288–308. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98989-1_15
Lai, R.W.F., Ronge, V., Ruffing, T., Schröder, D., Thyagarajan, S.A.K., Wang, J.: Omniring: scaling private payments without trusted setup. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 31–48 (2019)
Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signature for ad hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27800-9_28
Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43
Ohara, K., Sakai, Y., Emura, K., Hanaoka, G.: A group signature scheme with unbounded message-dependent opening. In: ASIA-CCS (2013)
Park, S., Sealfon, A.: It wasn’t me! In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 159–190. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_6
Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_32
Sun, S.-F., Au, M.H., Liu, J.K., Yuen, T.H.: RingCT 2.0: a compact accumulator-based (linkable ring signature) protocol for blockchain cryptocurrency Monero. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 456–474. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_25
Sakai, Y., Emura, K., Hanaoka, G., Kawai, Y., Matsuda, T., Omote, K.: Group signatures with message-dependent opening. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 270–294. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36334-4_18
Slamanig, D., Spreitzer, R., Unterluggauer, T.: Adding controllable linkability to pairing-based group signatures for free. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 388–400. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13257-0_23
Yuen, T.H., Esgin, M.F., Liu, J.K., Au, M.H., Ding, Z.: DualRing: generic construction of ring signatures with efficient instantiations. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 251–281. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_10
Yuen, T.H., et al.: RingCT 3.0 for blockchain confidential transaction: shorter size and stronger security. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 464–483. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4_25
Zhang, T., Wu, H., Chow, S.S.M.: Structure-preserving certificateless encryption and its application. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 1–22. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_1
Acknowledgements
his work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program under projects PICOCRYPT (grant agreement No. 101001283), and TERMINET (grant agreement No. 957406), by the Spanish Government under projects SCUM (ref. RTI2018-102043-B-I00), and RED2018-102321-T, by the Madrid Regional Government under project BLOQUES (ref. S2018/TCS-4339). This work is also supported by a grant from Nomadic Labs and the Tezos foundation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendices
A Full Definitions for our AKRS Model
We here provide the full experiment for our AKRS existential unforgeability under chosen message attacks requirement.
B Full Definitions for our Ring Signature Models
We here provide the full definitions for ring signatures with user controlled (autonomous) linking that were omitted from the main body of the paper.
Signature Unforgeability for RS-UCAL. We next provide the full experiment for the signature unforgeability requirement in the RS-UCAL model.
Non-Frameability. We now provide the full experiments for both the signature non-frameability and link non-frameability requirements in the RS-UC L model.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Fiore, D., Garms, L., Kolonelos, D., Soriente, C., Tucker, I. (2022). Ring Signatures with User-Controlled Linkability. In: Atluri, V., Di Pietro, R., Jensen, C.D., Meng, W. (eds) Computer Security – ESORICS 2022. ESORICS 2022. Lecture Notes in Computer Science, vol 13555. Springer, Cham. https://doi.org/10.1007/978-3-031-17146-8_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-17146-8_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-17145-1
Online ISBN: 978-3-031-17146-8
eBook Packages: Computer ScienceComputer Science (R0)