Skip to main content

A FAIR Core Semantic Metadata Model for FAIR Multidimensional Tabular Datasets

Part of the Lecture Notes in Computer Science book series (LNAI,volume 13514)

Abstract

Tabular format is a common format in open data. However, the meaning of columns is not always explicit which makes if difficult for non-domain experts to reuse the data. While most efforts in making data FAIR are limited to semantic metadata describing the overall features of datasets, such a description is not enough to ensure data interoperability and reusability. This paper proposes to reduce this weakness thanks to a (FAIR) core semantic model that is able to represent different kinds of metadata, including the data schema and the internal structure of a dataset. This model can then be linked to domain-specific definitions to provide domain understanding to data consumers .

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://ddialliance.org/learn/what-is-ddi (accessed on 10th June 2022).

  2. 2.

    https://fairsharing.org/ (accessed on 10th June 2022).

  3. 3.

    https://www.w3.org/TR/vocab-dcat-2/ (accessed on 8th June 2022).

  4. 4.

    https://www.w3.org/TR/eo-qb/ (accessed on 8th June 2022).

  5. 5.

    https://www.w3.org/ns/csvw (accessed on 10th June 2022).

  6. 6.

    https://protege.stanford.edu/ (accessed on 10th June 2022).

References

  1. Annane, A., Kamel, M., Trojahn, C., Aussenac-Gilles, N., Comparot, C., Baehr, C.: Towards the fairification of meteorological data: a meteorological semantic model. In: Garoufallou, E., Ovalle-Perandones, M.-A., Vlachidis, A. (eds.) Metadata and Semantic Research. pp, pp. 81–93. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98876-0_7

    CrossRef  Google Scholar 

  2. Benjelloun, O., Chen, S., Noy, N.F.: Google dataset search by the numbers. In: Proceedings of the 19th International Semantic Web Conference, pp. 667–682 (2020)

    Google Scholar 

  3. Garijo, D., Corcho, Ó., Poveda-Villalón, M.: Foops!: an ontology pitfall scanner for the FAIR principles. In: Seneviratne, O., Pesquita, C., Sequeda, J., Etcheverry, L. (eds.) Proceedings of the ISWC 2021 Posters, Demos and Industry Tracks: From Novel Ideas to Industrial Practice Co-located with 20th International Semantic Web Conference (ISWC 2021), CEUR Workshop Proceedings, vol. 2980. CEUR-WS.org (2021)

    Google Scholar 

  4. Greiner, A., Isaac, A., Iglesias, C.: Data on the web best practices. Technical report, W3C (2017). Accessed 30 Sept 2021

    Google Scholar 

  5. Guizzardi, G.: Ontology, Ontologies and the “I” of FAIR. Data Intell. 2(1-2), 181–191 (2020)

    Google Scholar 

  6. Jacobsen, A., et al.: FAIR principles: interpretations and implementation considerations. Data Intell. 2(1–2), 10–29 (2020)

    CrossRef  Google Scholar 

  7. Koesten, L., Simperl, E., Blount, T., Kacprzak, E., Tennison, J.: Everything you always wanted to know about a dataset: studies in data summarisation. Int. J. Hum. Comput. Stud. 135, 102367 (2020)

    Google Scholar 

  8. Lantow, B.: Ontometrics: putting metrics into use for ontology evaluation. In: Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - KEOD, (IC3K 2016), pp. 186–191. INSTICC, SciTePress (2016)

    Google Scholar 

  9. Lefort, L., Bobruk, J., Haller, A., Taylor, K., Woolf, A.: A linked sensor data cube for a 100 year homogenised daily temperature dataset. In: Proceedings of the 5th International Workshop on Semantic Sensor Networks, vol. 904, pp. 1–16 (2012)

    Google Scholar 

  10. Parekh, V., Gwo, J., Finin, T.W.: Ontology based semantic metadata for geoscience data. In: Arabnia, H.R. (ed.) Proceedings of the International Conference on Information and Knowledge Engineering. IKE 2004, 21–24 June 2004, Las Vegas, Nevada, USA, pp. 485–490. CSREA Press (2004)

    Google Scholar 

  11. Poveda-Villalón, M., Espinoza-Arias, P., Garijo, D., Corcho, O.: Coming to terms with FAIR ontologies. In: Keet, C.M., Dumontier, M. (eds.) EKAW 2020. LNCS (LNAI), vol. 12387, pp. 255–270. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61244-3_18

    CrossRef  Google Scholar 

  12. Poveda-Villalón, M., Gómez-Pérez, A., Suárez-Figueroa, M.C.: OOPS! (OntOlogy Pitfall Scanner!): an on-line tool for ontology evaluation. Int. J. Semant. Web Inf. Syst. (IJSWIS) 10(2), 7–34 (2014)

    CrossRef  Google Scholar 

  13. Suárez-Figueroa, M.C., Gómez-Pérez, A., Fernández-López, M.: The neon methodology framework: a scenario-based methodology for ontology development. Appl. Ontol. 10(2), 107–145 (2015)

    CrossRef  Google Scholar 

  14. van den Brink, L., et al.: Best practices for publishing, retrieving, and using spatial data on the web. Semant. Web 10(1), 95–114 (2019)

    CrossRef  Google Scholar 

  15. Wilkinson, M., Dumontier, M., et al.: The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3(1), 1–9 (2016)

    CrossRef  Google Scholar 

  16. Yacoubi, N., Faron, C., Michel, F., Gandon, F., Corby, O.: A model for meteorological knowledge graphs: application to Météo-France observational data. In: 22nd International Conference on Web Engineering, ICWE 2022, Bari, Italy (2022)

    Google Scholar 

Download references

Acknowledgement

This work is funded by the ANR (French National Research Agency) Semantics4FAIR project, contract ANR-19-DATA-0014-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cassia Trojahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trojahn, C., Kamel, M., Annane, A., Aussenac-Gilles, N., Nguyen, B.L. (2022). A FAIR Core Semantic Metadata Model for FAIR Multidimensional Tabular Datasets. In: Corcho, O., Hollink, L., Kutz, O., Troquard, N., Ekaputra, F.J. (eds) Knowledge Engineering and Knowledge Management. EKAW 2022. Lecture Notes in Computer Science(), vol 13514. Springer, Cham. https://doi.org/10.1007/978-3-031-17105-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17105-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17104-8

  • Online ISBN: 978-3-031-17105-5

  • eBook Packages: Computer ScienceComputer Science (R0)