Abstract
Tabular format is a common format in open data. However, the meaning of columns is not always explicit which makes if difficult for non-domain experts to reuse the data. While most efforts in making data FAIR are limited to semantic metadata describing the overall features of datasets, such a description is not enough to ensure data interoperability and reusability. This paper proposes to reduce this weakness thanks to a (FAIR) core semantic model that is able to represent different kinds of metadata, including the data schema and the internal structure of a dataset. This model can then be linked to domain-specific definitions to provide domain understanding to data consumers .
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
https://ddialliance.org/learn/what-is-ddi (accessed on 10th June 2022).
- 2.
https://fairsharing.org/ (accessed on 10th June 2022).
- 3.
https://www.w3.org/TR/vocab-dcat-2/ (accessed on 8th June 2022).
- 4.
https://www.w3.org/TR/eo-qb/ (accessed on 8th June 2022).
- 5.
https://www.w3.org/ns/csvw (accessed on 10th June 2022).
- 6.
https://protege.stanford.edu/ (accessed on 10th June 2022).
References
Annane, A., Kamel, M., Trojahn, C., Aussenac-Gilles, N., Comparot, C., Baehr, C.: Towards the fairification of meteorological data: a meteorological semantic model. In: Garoufallou, E., Ovalle-Perandones, M.-A., Vlachidis, A. (eds.) Metadata and Semantic Research. pp, pp. 81–93. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98876-0_7
Benjelloun, O., Chen, S., Noy, N.F.: Google dataset search by the numbers. In: Proceedings of the 19th International Semantic Web Conference, pp. 667–682 (2020)
Garijo, D., Corcho, Ó., Poveda-Villalón, M.: Foops!: an ontology pitfall scanner for the FAIR principles. In: Seneviratne, O., Pesquita, C., Sequeda, J., Etcheverry, L. (eds.) Proceedings of the ISWC 2021 Posters, Demos and Industry Tracks: From Novel Ideas to Industrial Practice Co-located with 20th International Semantic Web Conference (ISWC 2021), CEUR Workshop Proceedings, vol. 2980. CEUR-WS.org (2021)
Greiner, A., Isaac, A., Iglesias, C.: Data on the web best practices. Technical report, W3C (2017). Accessed 30 Sept 2021
Guizzardi, G.: Ontology, Ontologies and the “I” of FAIR. Data Intell. 2(1-2), 181–191 (2020)
Jacobsen, A., et al.: FAIR principles: interpretations and implementation considerations. Data Intell. 2(1–2), 10–29 (2020)
Koesten, L., Simperl, E., Blount, T., Kacprzak, E., Tennison, J.: Everything you always wanted to know about a dataset: studies in data summarisation. Int. J. Hum. Comput. Stud. 135, 102367 (2020)
Lantow, B.: Ontometrics: putting metrics into use for ontology evaluation. In: Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - KEOD, (IC3K 2016), pp. 186–191. INSTICC, SciTePress (2016)
Lefort, L., Bobruk, J., Haller, A., Taylor, K., Woolf, A.: A linked sensor data cube for a 100 year homogenised daily temperature dataset. In: Proceedings of the 5th International Workshop on Semantic Sensor Networks, vol. 904, pp. 1–16 (2012)
Parekh, V., Gwo, J., Finin, T.W.: Ontology based semantic metadata for geoscience data. In: Arabnia, H.R. (ed.) Proceedings of the International Conference on Information and Knowledge Engineering. IKE 2004, 21–24 June 2004, Las Vegas, Nevada, USA, pp. 485–490. CSREA Press (2004)
Poveda-Villalón, M., Espinoza-Arias, P., Garijo, D., Corcho, O.: Coming to terms with FAIR ontologies. In: Keet, C.M., Dumontier, M. (eds.) EKAW 2020. LNCS (LNAI), vol. 12387, pp. 255–270. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61244-3_18
Poveda-Villalón, M., Gómez-Pérez, A., Suárez-Figueroa, M.C.: OOPS! (OntOlogy Pitfall Scanner!): an on-line tool for ontology evaluation. Int. J. Semant. Web Inf. Syst. (IJSWIS) 10(2), 7–34 (2014)
Suárez-Figueroa, M.C., Gómez-Pérez, A., Fernández-López, M.: The neon methodology framework: a scenario-based methodology for ontology development. Appl. Ontol. 10(2), 107–145 (2015)
van den Brink, L., et al.: Best practices for publishing, retrieving, and using spatial data on the web. Semant. Web 10(1), 95–114 (2019)
Wilkinson, M., Dumontier, M., et al.: The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3(1), 1–9 (2016)
Yacoubi, N., Faron, C., Michel, F., Gandon, F., Corby, O.: A model for meteorological knowledge graphs: application to Météo-France observational data. In: 22nd International Conference on Web Engineering, ICWE 2022, Bari, Italy (2022)
Acknowledgement
This work is funded by the ANR (French National Research Agency) Semantics4FAIR project, contract ANR-19-DATA-0014-01.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Trojahn, C., Kamel, M., Annane, A., Aussenac-Gilles, N., Nguyen, B.L. (2022). A FAIR Core Semantic Metadata Model for FAIR Multidimensional Tabular Datasets. In: Corcho, O., Hollink, L., Kutz, O., Troquard, N., Ekaputra, F.J. (eds) Knowledge Engineering and Knowledge Management. EKAW 2022. Lecture Notes in Computer Science(), vol 13514. Springer, Cham. https://doi.org/10.1007/978-3-031-17105-5_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-17105-5_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-17104-8
Online ISBN: 978-3-031-17105-5
eBook Packages: Computer ScienceComputer Science (R0)