Skip to main content

EBOCA: Evidences for BiOmedical Concepts Association Ontology

  • Conference paper
  • First Online:
Knowledge Engineering and Knowledge Management (EKAW 2022)

Abstract

There is a large number of online documents data sources available nowadays. The lack of structure and the differences between formats are the main difficulties to automatically extract information from them, which also has a negative impact on its use and reuse. In the biomedical domain, the DISNET platform emerged to provide researchers with a resource to obtain information in the scope of human disease networks by means of large-scale heterogeneous sources. Specifically in this domain, it is critical to offer not only the information extracted from different sources, but also the evidence that supports it. This paper proposes EBOCA, an ontology that describes (i) biomedical domain concepts and associations between them, and (ii) evidences supporting these associations; with the objective of providing an schema to improve the publication and description of evidences and biomedical associations in this domain. The ontology has been successfully evaluated to ensure there are no errors, modelling pitfalls and that it meets the previously defined functional requirements. Test data coming from a subset of DISNET and automatic association extractions from texts has been transformed according to the proposed ontology to create a Knowledge Graph that can be used in real scenarios, and which has also been used for the evaluation of the presented ontology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://disnet.ctb.upm.es/.

  2. 2.

    https://bioportal.bioontology.org/.

  3. 3.

    https://ncithesaurus.nci.nih.gov/.

  4. 4.

    https://uts.nlm.nih.gov/uts/.

  5. 5.

    https://bio2rdf.org/.

  6. 6.

    https://disease-ontology.org/.

  7. 7.

    https://www.orpha.net/.

  8. 8.

    https://nsides.io/.

  9. 9.

    https://www.dublincore.org/specifications/dublin-core/dcmi-terms/.

  10. 10.

    https://w3id.org/eboca/portal.

  11. 11.

    https://w3id.org/eboca/sem-disnet, https://w3id.org/eboca/evidences.

  12. 12.

    https://w3id.org/eboca/portal.

  13. 13.

    https://w3id.org/eboca/sem-disnet.

  14. 14.

    https://medal.ctb.upm.es/internal/gitlab/disnet/sem-disnet/blob/master/diagrams/SEM-DISNET_hierarchy.png.

  15. 15.

    https://w3id.org/eboca/evidences.

  16. 16.

    https://www.dublincore.org/specifications/dublin-core/dcmi-terms/.

  17. 17.

    https://drugs4covid.github.io/EBOCA-portal/requirements/requirements-evidences.html.

  18. 18.

    https://github.com/drugs4covid/EBOCA-Resources.

  19. 19.

    https://blazegraph.com/.

References

  1. Arenas-Guerrero, J., Chaves-Fraga, D., Toledo, J., Pérez, M.S., Corcho, O.: Morph-KGC: scalable knowledge graph materialization with mapping partitions. Semantic Web 1–20 (2022). http://www.semantic-web-journal.net/system/files/swj3135.pdf

  2. Badenes-Olmedo, C., Alonso, A., Corcho, O.: An overview of drugs, diseases, genes and proteins in the cord-19 corpus. Procesamiento del Lenguaje Natural, vol. 69 (2022)

    Google Scholar 

  3. Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: towards a mashup to build bioinformatics knowledge systems. J. Biomed. Inform. 41(5), 706–716 (2008). https://doi.org/10.1016/j.jbi.2008.03.004

    Article  Google Scholar 

  4. Bodenreider, O.: The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res. 32(suppl_1), D267–D270 (2004). https://doi.org/10.1093/nar/gkh061

  5. Bodenreider, O., Mitchell, J.A., McCray, A.T.: Biomedical ontologies. In: Pacific Symposium on Biocomputing, pp. 76–78 (2005)

    Google Scholar 

  6. Bodenreider, O., Stevens, R.: Bio-ontologies: current trends and future directions. Brief. Bioinform. 7(3), 256–274 (2016). https://doi.org/10.1093/bib/bbl027

    Article  Google Scholar 

  7. Chávez-Feria, S., García-Castro, R., Poveda-Villalón, M.: Chowlk: from UML-based ontology conceptualizations to owl. In: Groth, P., et al. (eds.) The Semantic Web, pp. 338–352. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06981-9_20

    Chapter  Google Scholar 

  8. Ciccarese, P., Soiland-Reyes, S., Belhajjame, K., Gray, A.J., Goble, C., Clark, T.: Pav ontology: provenance, authoring and versioning. J. Biomed. Semant. 4(1), 1–22 (2013)

    Article  Google Scholar 

  9. Consortium, G.O.: The gene ontology (GO) database and informatics resource. Nucleic Acids Res. 32(suppl_1), D258–D261 (2004)

    Google Scholar 

  10. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF Mapping Language, W3C Recommendation, 27 September 2012. www.w3.org/TR/r2rml

  11. Davis, A.P., et al.: Comparative toxicogenomics database (CTD): update 2021. Nucleic Acids Res. 49, D1138–D1143 (2021). https://doi.org/10.1093/nar/gkaa891

    Article  Google Scholar 

  12. Dimou, A., Sande, M.V., Colpaert, P., Verborgh, R., Mannens, E., Van De Walle, R.: RML: a generic language for integrated RDF mappings of heterogeneous data. In: LDOW (2014)

    Google Scholar 

  13. Dumontier, M., et al.: The semanticscience integrated ontology (SIO) for biomedical research and knowledge discovery. J. Biomed. Semant. 5(1), 14 (2014). https://doi.org/10.1186/2041-1480-5-14

    Article  Google Scholar 

  14. Eilbeck, K., et al.: The Sequence Ontology: a tool for the unification of genome annotations. Genome Biol. 6(5), R44 (2005). https://doi.org/10.1186/gb-2005-6-5-r44

    Article  Google Scholar 

  15. Fernández-Izquierdo, A., Cimmino, A., García-Castro, R.: Supporting demand-response strategies with the delta ontology. In: 2021 IEEE/ACS 18th International Conference on Computer Systems and Applications (AICCSA), pp. 1–8. IEEE (2021)

    Google Scholar 

  16. Garijo, D.: WIDOCO: a wizard for documenting ontologies. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 94–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4_9

    Chapter  Google Scholar 

  17. Giglio, M., et al.: Eco, the evidence & conclusion ontology: community standard for evidence information. Nucleic Acids Res. 47(D1), D1186–D1194 (2019)

    Article  Google Scholar 

  18. Goh, K.I., Cusick, M.E., Valle, D., Childs, B., Vidal, M., Barabási, A.L.: The human disease network. Proc. Natl. Acad. Sci. 104(21), 8685–8690 (2007). https://doi.org/10.1073/pnas.0701361104

    Article  Google Scholar 

  19. Graves, M., Constabaris, A., Brickley, D.: FOAF: connecting people on the semantic web. Cataloging Classif. Q. 43(3–4), 191–202 (2007)

    Article  Google Scholar 

  20. Iglesias-Molina, A., Pozo-Gilo, L., Doņa, D., Ruckhaus, E., Chaves-Fraga, D., Corcho, Ó.: Mapeathor: simplifying the specification of declarative rules for knowledge graph construction. In: ISWC (Demos/Industry) (2020)

    Google Scholar 

  21. Jackson, R., et al.: OBO foundry in 2021: operationalizing open data principles to evaluate ontologies. Database 2021, baab069 (2021). https://doi.org/10.1093/database/baab069

  22. Köhler, S., et al.: The human phenotype ontology in 2021. Nucleic Acids Res. 49(D1), D1207–D1217 (2021). https://doi.org/10.1093/nar/gkaa1043

    Article  Google Scholar 

  23. Lagunes-García, G., Rodríguez-González, A., Prieto-Santamaría, L., del Valle, E.P.G., Zanin, M., Menasalvas-Ruiz, E.: DISNET: a framework for extracting phenotypic disease information from public sources. PeerJ 8, e8580 (2020). https://doi.org/10.7717/peerj.8580

  24. Lebo, T., et al.: PROV-O: The PROV ontology (2013). www.w3.org/TR/prov-o/

  25. Martens, M., et al.: WikiPathways: connecting communities. Nucleic Acids Res. 49(D1), D613–D621 (2021). https://doi.org/10.1093/nar/gkaa1024

  26. Mendez, D., et al.: ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 47, D930–D940 (2019). https://doi.org/10.1093/nar/gky1075

    Article  Google Scholar 

  27. Natale, D.A., et al.: The Protein Ontology: a structured representation of protein forms and complexes. Nucleic Acids Res. 39(suppl_1), D539–D545 (2011). https://doi.org/10.1093/nar/gkq907

  28. Peroni, S., Shotton, D.: The SPAR ontologies. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 119–136. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00668-6_8

    Chapter  Google Scholar 

  29. Piñero, J., et al.: The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 48, D845–D855 (2020). https://doi.org/10.1093/nar/gkz1021

    Article  Google Scholar 

  30. Poveda-Villalón, M., Gómez-Pérez, A., Suárez-Figueroa, M.C.: Oops!(ontology pitfall scanner!): an on-line tool for ontology evaluation. Int. J. Semant. Web Inf. Syst. (IJSWIS) 10(2), 7–34 (2014)

    Article  Google Scholar 

  31. Poveda-Villalón, M., Fernández-Izquierdo, A., Fernández-López, M., García-Castro, R.: LOT: an industrial oriented ontology engineering framework. Eng. Appl. Artif. Intell. 111, 104755 (2022). https://doi.org/10.1016/j.engappai.2022.104755

    Article  Google Scholar 

  32. Prieto Santamaría, L., Díaz Uzquiano, M., Ugarte Carro, E., Ortiz-Roldán, N., Pérez Gallardo, Y., Rodríguez-González, A.: Integrating heterogeneous data to facilitate COVID-19 drug repurposing. Drug Discovery Today 27(2), 558–566 (2022). https://doi.org/10.1016/j.drudis.2021.10.002

    Article  Google Scholar 

  33. Prieto Santamaría, L., Ugarte Carro, E., Díaz Uzquiano, M., Menasalvas Ruiz, E., Pérez Gallardo, Y., Rodríguez-González, A.: A data-driven methodology towards evaluating the potential of drug repurposing hypotheses. Comput. Struct. Biotechnol. J. 19, 4559–4573 (2021). https://doi.org/10.1016/j.csbj.2021.08.003

    Article  Google Scholar 

  34. Prieto Santamaría, L., García del Valle, E.P., Zanin, M., Hernández Chan, G.S., Pérez Gallardo, Y., Rodríguez-González, A.: Classifying diseases by using biological features to identify potential nosological models. Sci. Rep. 11(1), 21096 (2021). https://doi.org/10.1038/s41598-021-00554-6

  35. Queralt-Rosinach, N., Piñero, J., Bravo, A., Sanz, F., Furlong, L.I.: DisGeNET-RDF: harnessing the innovative power of the semantic web to explore the genetic basis of diseases. Bioinformatics 32(14), 2236–2238 (2016)

    Article  Google Scholar 

  36. Redaschi, N., Consortium, U.: UniProt in RDF: tackling data integration and distributed annotation with the semantic web. Nat. Precedings (2019). https://doi.org/10.1038/npre.2009.3193.1

  37. Schriml, L.M., et al.: The human disease ontology 2022 update. Nucleic Acids Res. 50, D1255–D1261 (2022). https://doi.org/10.1093/nar/gkab1063

    Article  Google Scholar 

  38. Suárez-Figueroa, M.C., Gómez-Pérez, A., Fernandez-Lopez, M.: The neon methodology framework: a scenario-based methodology for ontology development. Appl. Ontol. 10(2), 107–145 (2015)

    Article  Google Scholar 

  39. García del Valle, E.P., Lagunes García, G., Prieto Santamaría, L., Zanin, M., Menasalvas Ruiz, E., Rodríguez-González, A.: DisMaNET: a network-based tool to cross map disease vocabularies. Comput. Methods Programs Biomed. 207, 106233 (2021). https://doi.org/10.1016/j.cmpb.2021.106233

  40. Vasant, D., et al.: ORDO: an ontology connecting rare disease, epidemiology and genetic data. In: Bio-Ontologies ISMB 2014, July 2014

    Google Scholar 

  41. Wishart, D.S., et al.: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46(D1), D1074–D1082 (2018). https://doi.org/10.1093/nar/gkx1037

  42. Zahn-Zabal, M., et al.: The neXtProt knowledgebase in 2020: data, tools and usability improvements. Nucleic Acids Res. 48, D328–D334 (2020). https://doi.org/10.1093/nar/gkz995

Download references

Acknowledgments

This work is supported by the DRUGS4COVID++ project, funded by Ayudas Fundación BBVA a equipos de investigación científica SARS-CoV-2 y COVID-19. The work is also supported by “Data-driven drug repositioning applying graph neural networks (3DR-GNN)” under grant “PID2021-122659OB-I00” from the Spanish Ministerio de Ciencia, Innovación y Universidades. LPS’s work is supported by “Programa de fomento de la investigación y la innovación (Doctorados Industriales)” from Comunidad de Madrid (grant “IND2019/TIC-17159”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Rodríguez-González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pérez, A.Á., Iglesias-Molina, A., Santamaría, L.P., Poveda-Villalón, M., Badenes-Olmedo, C., Rodríguez-González, A. (2022). EBOCA: Evidences for BiOmedical Concepts Association Ontology. In: Corcho, O., Hollink, L., Kutz, O., Troquard, N., Ekaputra, F.J. (eds) Knowledge Engineering and Knowledge Management. EKAW 2022. Lecture Notes in Computer Science(), vol 13514. Springer, Cham. https://doi.org/10.1007/978-3-031-17105-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17105-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17104-8

  • Online ISBN: 978-3-031-17105-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics