Abstract
To be able to limit the temperature increase to clearly under 2 ℃ above pre-industrial levels, the European Union and Germany in particular are facing profound change in their energy system in the coming years. The end of coal-fired power generation, the coupling of different sectors (e.g. electricity, heat, mobility…) and the associated digitization are confronting companies with changed market and framework conditions. In order to master this change towards a sustainable and reliable energy supply and to use it as an opportunity, innovative technologies and well-trained specialists and managers are needed. The combination of in-depth knowledge from the fields of energy technology with in-depth knowledge of digitization and its business models as well as IT security offers a unique opportunity to master these challenges in a sustainable and controllable manner. This paper addresses challenges arising from the digitization of the energy system and shows exemplary solutions from projects at the recently established Fraunhofer Center for Digital Energy.
This paper is an extended version of an invited keynote presentation given by the first author at the SmartGreens 2020 conference.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
United Nations: Paris Agreement. Paris (2015)
Schumann, K., Schwaeppe, H., Böttcher, L., et al.: Definition of common scenario framework, data/modelling requirements and use cases. PlaMES Deliverable 2.1 (2020). https://doi.org/10.18154/RWTH-2021-09943
German Bundesnetzagentur, EEG in numbers 2019, Stand 19.04.2021
CEDEC, EDSO, ENTSO-E, Eurelectic, and GEODE: TSO-DSO Report: An Integrated Approach to Active System Management (2019). https://www.entsoe.eu/news/2019/04/16/a-toolbox-for-tsos-and-dsos-to-make-use-of-new-system-and-grid-services/
Thie, N., Franken, M., Schwaeppe, M., et al.: Requirements for integrated planning of multi-energy systems. In: Proceedings IEEE ENERGYCON, pp. 696–701 (2020)
Müller, C., Hoffrichter, A., Wyrwoll, L., et al.: Modeling framework for planning and operation of multi-modal energy systems in the case of Germany. Appl. Energy 250, 1132–1146 (2019)
Wilhelm, C., Schumann, K., Andres, M., et al.: A simulative framework for a multi-regional assessment of local energy markets – a case of large-scale electric vehicle deployment in Germany. Appl. Energy 299, 117249 (2021)
Schumann, K., Schwaeppe, H., Böttcher, L., Hein, L., Hälsig, P.: Description of workflow coordination, PlaMES Deliverable 3.1 (2021). https://publications.rwth-aachen.de/record/834498
Monaci, M., Paronuzzi, P., Punzo, A., Vigo, D.: Analysis of problem structure and first concept of decomposition approach. PlaMES Deliverable 2.3 (2020). https://plames.eu/wp-content/uploads/2020/11/deliverableD2_3_stc.pdf
Schwaeppe, H., Moser, A., Paronuzzi, P., Monaci, M.: Generation and transmission expansion planning with respect to global warming potential. In: Proceedings IEEE Powertech (2021)
Schwaeppe, H., Böttcher, L., Franken, M., et al.: Mathematical formulation of the model. PlaMES Deliverable 2.2 (2020). https://doi.org/10.18154/RWTH-2021-09942
Casals, M., Gangolells, M., Forcada, N., et al.: SEAM4US – an intelligent energy management system for underground stations. Appl. Energy 166, 150–164 (2016)
Kiljander, J., Gabrielcic, D., Werner-Kytölä, O., et al.: Residential flexibility management – a case study in distribution networks. IEEE Acceess 7, 80902–80915 (2019). https://doi.org/10.1109/ACCESS.2019.2923069
Sauer, A., Abele, E., Buh, H-U.l (eds.): Energieflexibilität in der deutschen Industrie (Syn-Ergie). Fraunhofer-Verlag, Stuttgart 2019
Bauernhansl, T., Bauer, D., et al.: Industrie 4.0 als befähiger der energieflexibilität. In: Sauer, A., Abele, E., Buhl, H.-U. (eds.) Energieflexibilität in der deutschen Industrie (SynErgie), pp. 245–310. Fraunhofer-Verlag, Stuttgart (2019)
Van der Velde, D., Henze, M., et al.: Methods for actors in the electric power system to prevent, detect and react to ICT attacks and failures. In: Proceedings IEEE Energy Conference, pp. 17–22 (2020)
Sen, Ö., van der Velde, D., et al.: Towards an approach to contextual detection of multi-stage coordinated cyberattacks in energy information systems. In: IEEE SEST (2021)
Van der Velde, D., Sen, Ö., et al.: Towards a scalable and flexible smart grid co-simulation environment to investigate communication infrastructures for resilient distribution grid operation. In: Proceedings IEEE SEST (2021)
Buhl, H.-U., Fridgen, G., Dufter, C., et al.: Industrielle energieflexibilität im energiesyystem. In: Sauer, A., Abele, E., Buhl, H.-U. (eds.) Energieflexibilität in der deutschen Industrie (SynErgie), pp. 127–194. Fraunhofer-Verlag, Stuttgart (2019)
Pfeiffer, A., Jarke, M.: Digital transformation within the eMobility market – learnings and insights from early market development. SmartER Europe, pp. 23–42 (2016). https://doi.org/10.1007/978-3-319-66553-5_2
Cramer, W., Schumann, K., Andres, M., et al.: A simulative framework for a multi-regional assessment of local energy markets – a case of large-scale electric vehicle deployment in Germany. Appl. Energy 299, 117249 (2021)
Vasconcelos, M., Cramer, W., Schmitt, C., et al.: The pebbles project – enabling blockchain-based transactive energy trading of energy & flexibility within a regional market. In: Proceedings 25th International Conference on Electricity Distribution (CIRED), Madrid, paper 1313 (2019). https://cired-repository.org/handle/20.500.12455/36
Weinhardt, C., Mengelkamp, E., Cramer, W., et al.: How far along are local markets in the DACH+ region? A comparative market engineering approach. In: Proceeding. 10th International Conference Future Energy Systems (e-Energy 2019), ACM, pp. 544–549 (2019)
Klaus, J., Hilpert, J., et al.: Ein Plattform-Konzept für eine kostenoptimierte Energiewende mit Hilfe lokaler Energiemärkte. https://pebbles-projekt.de/wp-content/uploads/2018/05/pebbles_Whitepaper-2.pdf
Acknowledgements
Build-up of the Fraunhofer Center Digital Energy is partially funded by the German Ministry of Education and Research (BMBF) as an immediate advance project (Sofort-Sofort-Projekt) within the national “Structure Strengthening Law”. Additionally, we acknowledge funding, and thank all the participants, of the following individual projects: OneNet (One Network for Europe) by EU H2020 sub-program “TSO – DSO Consumer: Large-scale demonstrations of innovative grid services through demand response, storage and small-scale (RES) generation” ; SEAM4US by EU FPT (285408); PlaMES and Flex4Grid by EU H2020 under grant agreements 646428 and 863922; MEDIT by the German Federal Ministry for Economic Affairs and Energy (BMWi) reference 0350028. Pebbles by BMWi under Smart Service Welt II grant 01MD18003B; and SynErgie by the BMBF Kopernikus program.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Jarke, M. et al. (2022). Digital Energy: Towards Comprehensive Digital Support for a Renewable-Based Energy Sector. In: Klein, C., Jarke, M., Helfert, M., Berns, K., Gusikhin, O. (eds) Smart Cities, Green Technologies, and Intelligent Transport Systems. VEHITS SMARTGREENS 2021 2021. Communications in Computer and Information Science, vol 1612. Springer, Cham. https://doi.org/10.1007/978-3-031-17098-0_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-17098-0_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-17097-3
Online ISBN: 978-3-031-17098-0
eBook Packages: Computer ScienceComputer Science (R0)