Skip to main content

Digital Energy: Towards Comprehensive Digital Support for a Renewable-Based Energy Sector

  • Conference paper
  • First Online:
Smart Cities, Green Technologies, and Intelligent Transport Systems (VEHITS 2021, SMARTGREENS 2021)

Abstract

To be able to limit the temperature increase to clearly under 2 ℃ above pre-industrial levels, the European Union and Germany in particular are facing profound change in their energy system in the coming years. The end of coal-fired power generation, the coupling of different sectors (e.g. electricity, heat, mobility…) and the associated digitization are confronting companies with changed market and framework conditions. In order to master this change towards a sustainable and reliable energy supply and to use it as an opportunity, innovative technologies and well-trained specialists and managers are needed. The combination of in-depth knowledge from the fields of energy technology with in-depth knowledge of digitization and its business models as well as IT security offers a unique opportunity to master these challenges in a sustainable and controllable manner. This paper addresses challenges arising from the digitization of the energy system and shows exemplary solutions from projects at the recently established Fraunhofer Center for Digital Energy.

This paper is an extended version of an invited keynote presentation given by the first author at the SmartGreens 2020 conference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. United Nations: Paris Agreement. Paris (2015)

    Google Scholar 

  2. Schumann, K., Schwaeppe, H., Böttcher, L., et al.: Definition of common scenario framework, data/modelling requirements and use cases. PlaMES Deliverable 2.1 (2020). https://doi.org/10.18154/RWTH-2021-09943

  3. German Bundesnetzagentur, EEG in numbers 2019, Stand 19.04.2021

    Google Scholar 

  4. CEDEC, EDSO, ENTSO-E, Eurelectic, and GEODE: TSO-DSO Report: An Integrated Approach to Active System Management (2019). https://www.entsoe.eu/news/2019/04/16/a-toolbox-for-tsos-and-dsos-to-make-use-of-new-system-and-grid-services/

  5. Thie, N., Franken, M., Schwaeppe, M., et al.: Requirements for integrated planning of multi-energy systems. In: Proceedings IEEE ENERGYCON, pp. 696–701 (2020)

    Google Scholar 

  6. Müller, C., Hoffrichter, A., Wyrwoll, L., et al.: Modeling framework for planning and operation of multi-modal energy systems in the case of Germany. Appl. Energy 250, 1132–1146 (2019)

    Article  Google Scholar 

  7. Wilhelm, C., Schumann, K., Andres, M., et al.: A simulative framework for a multi-regional assessment of local energy markets – a case of large-scale electric vehicle deployment in Germany. Appl. Energy 299, 117249 (2021)

    Article  Google Scholar 

  8. Schumann, K., Schwaeppe, H., Böttcher, L., Hein, L., Hälsig, P.: Description of workflow coordination, PlaMES Deliverable 3.1 (2021). https://publications.rwth-aachen.de/record/834498

  9. Monaci, M., Paronuzzi, P., Punzo, A., Vigo, D.: Analysis of problem structure and first concept of decomposition approach. PlaMES Deliverable 2.3 (2020). https://plames.eu/wp-content/uploads/2020/11/deliverableD2_3_stc.pdf

  10. Schwaeppe, H., Moser, A., Paronuzzi, P., Monaci, M.: Generation and transmission expansion planning with respect to global warming potential. In: Proceedings IEEE Powertech (2021)

    Google Scholar 

  11. Schwaeppe, H., Böttcher, L., Franken, M., et al.: Mathematical formulation of the model. PlaMES Deliverable 2.2 (2020). https://doi.org/10.18154/RWTH-2021-09942

  12. Casals, M., Gangolells, M., Forcada, N., et al.: SEAM4US – an intelligent energy management system for underground stations. Appl. Energy 166, 150–164 (2016)

    Article  Google Scholar 

  13. Kiljander, J., Gabrielcic, D., Werner-Kytölä, O., et al.: Residential flexibility management – a case study in distribution networks. IEEE Acceess 7, 80902–80915 (2019). https://doi.org/10.1109/ACCESS.2019.2923069

    Article  Google Scholar 

  14. Sauer, A., Abele, E., Buh, H-U.l (eds.): Energieflexibilität in der deutschen Industrie (Syn-Ergie). Fraunhofer-Verlag, Stuttgart 2019

    Google Scholar 

  15. Bauernhansl, T., Bauer, D., et al.: Industrie 4.0 als befähiger der energieflexibilität. In: Sauer, A., Abele, E., Buhl, H.-U. (eds.) Energieflexibilität in der deutschen Industrie (SynErgie), pp. 245–310. Fraunhofer-Verlag, Stuttgart (2019)

    Google Scholar 

  16. Van der Velde, D., Henze, M., et al.: Methods for actors in the electric power system to prevent, detect and react to ICT attacks and failures. In: Proceedings IEEE Energy Conference, pp. 17–22 (2020)

    Google Scholar 

  17. Sen, Ö., van der Velde, D., et al.: Towards an approach to contextual detection of multi-stage coordinated cyberattacks in energy information systems. In: IEEE SEST (2021)

    Google Scholar 

  18. Van der Velde, D., Sen, Ö., et al.: Towards a scalable and flexible smart grid co-simulation environment to investigate communication infrastructures for resilient distribution grid operation. In: Proceedings IEEE SEST (2021)

    Google Scholar 

  19. Buhl, H.-U., Fridgen, G., Dufter, C., et al.: Industrielle energieflexibilität im energiesyystem. In: Sauer, A., Abele, E., Buhl, H.-U. (eds.) Energieflexibilität in der deutschen Industrie (SynErgie), pp. 127–194. Fraunhofer-Verlag, Stuttgart (2019)

    Google Scholar 

  20. Pfeiffer, A., Jarke, M.: Digital transformation within the eMobility market – learnings and insights from early market development. SmartER Europe, pp. 23–42 (2016). https://doi.org/10.1007/978-3-319-66553-5_2

  21. Cramer, W., Schumann, K., Andres, M., et al.: A simulative framework for a multi-regional assessment of local energy markets – a case of large-scale electric vehicle deployment in Germany. Appl. Energy 299, 117249 (2021)

    Article  Google Scholar 

  22. Vasconcelos, M., Cramer, W., Schmitt, C., et al.: The pebbles project – enabling blockchain-based transactive energy trading of energy & flexibility within a regional market. In: Proceedings 25th International Conference on Electricity Distribution (CIRED), Madrid, paper 1313 (2019). https://cired-repository.org/handle/20.500.12455/36

  23. Weinhardt, C., Mengelkamp, E., Cramer, W., et al.: How far along are local markets in the DACH+ region? A comparative market engineering approach. In: Proceeding. 10th International Conference Future Energy Systems (e-Energy 2019), ACM, pp. 544–549 (2019)

    Google Scholar 

  24. Klaus, J., Hilpert, J., et al.: Ein Plattform-Konzept für eine kostenoptimierte Energiewende mit Hilfe lokaler Energiemärkte. https://pebbles-projekt.de/wp-content/uploads/2018/05/pebbles_Whitepaper-2.pdf

Download references

Acknowledgements

Build-up of the Fraunhofer Center Digital Energy is partially funded by the German Ministry of Education and Research (BMBF) as an immediate advance project (Sofort-Sofort-Projekt) within the national “Structure Strengthening Law”. Additionally, we acknowledge funding, and thank all the participants, of the following individual projects: OneNet (One Network for Europe) by EU H2020 sub-program “TSO – DSO Consumer: Large-scale demonstrations of innovative grid services through demand response, storage and small-scale (RES) generation” ; SEAM4US by EU FPT (285408); PlaMES and Flex4Grid by EU H2020 under grant agreements 646428 and 863922; MEDIT by the German Federal Ministry for Economic Affairs and Energy (BMWi) reference 0350028. Pebbles by BMWi under Smart Service Welt II grant 01MD18003B; and SynErgie by the BMBF Kopernikus program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Jarke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jarke, M. et al. (2022). Digital Energy: Towards Comprehensive Digital Support for a Renewable-Based Energy Sector. In: Klein, C., Jarke, M., Helfert, M., Berns, K., Gusikhin, O. (eds) Smart Cities, Green Technologies, and Intelligent Transport Systems. VEHITS SMARTGREENS 2021 2021. Communications in Computer and Information Science, vol 1612. Springer, Cham. https://doi.org/10.1007/978-3-031-17098-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17098-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17097-3

  • Online ISBN: 978-3-031-17098-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics