Skip to main content

Optimal Control of Traffic Flow Based on Reinforcement Learning

  • Conference paper
  • First Online:
Smart Cities, Green Technologies, and Intelligent Transport Systems (VEHITS 2021, SMARTGREENS 2021)

Abstract

We study approaches to use (real-time) data, communicated between cars and infrastructure, to improve and to optimize traffic flow in the future and, thereby, to support holistic, efficient and sustainable mobility solutions. To set up virtual traffic environments ranging from artificial scenarios up to complex real world road networks, we use microscopic traffic models and traffic simulation software SUMO. In particular, we apply a reinforcement learning approach, in order to teach controllers (agents) to guide certain vehicles or to control infrastructural guidance systems, such as traffic lights. With real-time information obtained from other vehicles, the agent iteratively learns to improve the traffic flow by repetitive observation and algorithmic optimization. For the RL approach, we consider different control policies including widely used neural nets but also Linear Models and Radial Basis Function Networks. Finally, we compare our RL controller with other control approaches and analyse the robustness of the RL traffic light controller, especially under extreme scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arel, I., Liu, C., Urbanik, T., Kohls, A.: Reinforcement learning-based multi-agent system for network traffic signal control. IET Intel. Transp. Syst. 4, 128–135 (2010). https://doi.org/10.1049/iet-its.2009.0070

    Article  Google Scholar 

  2. Baumgart, U., Burger, M.: A reinforcement learning approach for traffic control. In: Proceedings of the 7th International Conference on Vehicle Technology and Intelligent Transport Systems - VEHITS, pp. 133–141. INSTICC, SciTePress (2021). https://doi.org/10.5220/0010448501330141

  3. Belletti, F., Haziza, D., Gomes, G., Bayen, A.: Expert level control of ramp metering based on multi-task deep reinforcement learning. IEEE Trans. Intell. Transp. Syst. 19(4), 1198–1207 (2017). https://doi.org/10.1109/TITS.2017.2725912

    Article  Google Scholar 

  4. Bhattacharyya, R.P., Senanayake, R., Brown, K., Kochenderfer, M.J.: Online parameter estimation for human driver behavior prediction. In: 2020 American Control Conference (ACC), pp. 301–306 (2020). https://doi.org/10.23919/ACC45564.2020.9147924

  5. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer-Verlag, New York (2006). https://doi.org/10.1108/03684920710743466

  6. Burger, M., Goettlich, S., Jung, T.: Derivation of second order traffic flow models with time delays. Netw. Heterogen. Media 14, 265–288 (2019). https://doi.org/10.3934/nhm.2019011

    Article  MathSciNet  MATH  Google Scholar 

  7. De Schutter, B., De Moor, B.: Optimal traffic light control for a single intersection. Eur. J. Control. 4(3), 260–276 (1998). https://doi.org/10.1016/S0947-3580(98)70119-0

    Article  MATH  Google Scholar 

  8. Duan, Y., Chen, X., Houthooft, R., Schulman, J., Abbeel, P.: Benchmarking deep reinforcement learning for continuous control. In: Proceedings of The 33rd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 48, pp. 1329–1338 (2016). https://doi.org/10.5555/3045390.3045531

  9. Feinberg, E., Shwartz, A.: Handbook of Markov Decision Processes: Methods and Applications. Springer, US (2002). https://doi.org/10.1007/978-1-4615-0805-2

  10. François-Lavet, V., Henderson, P., Islam, R., Bellemare, M.G., Pineau, J.: An introduction to deep reinforcement learning. Found. Trends® Mach. Learn. 11(3–4), 219–354 (2018). https://doi.org/10.1561/2200000071

  11. Helbing, D.: Verkehrsdynamik. Springer-Verlag Berlin Heidelberg (1997). https://doi.org/10.1007/978-3-319-78695-7

  12. Kalashnikov, D., et al.: QT-Opt: scalable deep reinforcement learning for vision-based robotic manipulation. In: Proceedings of The 2nd Conference on Robot Learning. Proceedings of Machine Learning Research, vol. 87, pp. 651–673 (2018)

    Google Scholar 

  13. Kessels, F.: Traffic Flow Modelling. Springer International Publishing (2019). https://doi.org/10.1007/978-3-642-59063-4

  14. Lighthill, M.J., Whitham, G.B.: On kinematic waves II. A theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. A. 229, 317–345 (1955). https://doi.org/10.1098/rspa.1955.0089

  15. Lopez, P.A., et al.: Microscopic traffic simulation using SUMO. In: The 21st IEEE International Conference on Intelligent Transportation Systems (2018). https://doi.org/10.1109/ITSC.2018.8569938

  16. Lu, X.Y., Varaiya, P., Horowitz, R., Su, D., Shladover, S.E.: Novel freeway traffic control with variable speed limit and coordinated ramp metering. Transp. Res. Rec. J. Transp. Res. Board 2229(1), 55–65 (2011). https://doi.org/10.3141/2229-07

    Article  Google Scholar 

  17. Mania, H., Guy, A., Recht, B.: Simple random search provides a competitive approach to reinforcement learning. arXiv: 1803.07055 (2018)

  18. McNeil, D.R.: A solution to the fixed-cycle traffic light problem for compound poisson arrivals. J. Appl. Probab. 5(3), 624–635 (1968). https://doi.org/10.2307/3211926

    Article  MathSciNet  MATH  Google Scholar 

  19. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. The MIT Press (2012)

    Google Scholar 

  20. OpenStreetMap (2021). https://www.openstreetmap.org. Accessed 22 Oct 2021

  21. Orosz, G.: Connected cruise control: modelling, delay effects, and nonlinear behaviour. Veh. Syst. Dyn. 54(8), 1147–1176 (2016). https://doi.org/10.1080/00423114.2016.1193209

    Article  Google Scholar 

  22. Orosz, G., Wilson, R.E., Stépán, G.: Traffic jams: dynamics and control. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368(1928), 4455–4479 (2010). https://doi.org/10.1098/rsta.2010.0205

    Article  MathSciNet  MATH  Google Scholar 

  23. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, 1st (edn) (1994). https://doi.org/10.1002/9780470316887

  24. Rajeswaran, A., et al.: Learning complex dexterous manipulation with deep reinforcement learning and demonstrations. In: Proceedings of Robotics: Science and Systems (RSS) (2018). https://doi.org/10.15607/RSS.2018.XIV.049

  25. Silver, D., et al.: A general reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science 362(6419), 1140–1144 (2018). https://doi.org/10.1126/science.aar6404

    Article  MathSciNet  MATH  Google Scholar 

  26. Stern, R.E., et al.: Dissipation of stop-and-go waves via control of autonomous vehicles: field experiments. Transp. Res. Part C Emerg. Technol. 89, 205–221 (2018). https://doi.org/10.1016/j.trc.2018.02.005

    Article  Google Scholar 

  27. Sugiyama, Y., et al.: Traffic jams without bottlenecks—experimental evidence for the physical mechanism of the formation of a jam. New J. Phys. 10(3), 033001 (2008). https://doi.org/10.1088/1367-2630/10/3/033001

  28. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn. Adaptive Computation and Machine Learning, MIT Press (2018)

    MATH  Google Scholar 

  29. The MathWorks Inc: Reinforcement Learning Toolbox. Matlab R2020b. Natick, Massachusetts, United State (2021). https://www.mathworks.com/help/reinforcement-learning/

  30. Treiber, M., Kesting, A.: Traffic Flow Dynamics. Springer-Verlag, Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-642-32460-4

  31. Vinitsky, E., et al.: Benchmarks for reinforcement learning in mixed-autonomy traffic. In: Proceedings of The 2nd Conference on Robot Learning. Proceedings of Machine Learning Research, vol. 87, pp. 399–409 (2018)

    Google Scholar 

  32. Wang, J., Zheng, Y., Xu, Q., Wang, J., Li, K.: Controllability analysis and optimal control of mixed traffic flow with human-driven and autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 22(12), 1–15 (2020). https://doi.org/10.1109/TITS.2020.3002965

    Article  Google Scholar 

  33. Wiering, M.: Multi-agent reinforcement leraning for traffic light control. In: Proceedings of the Seventeenth International Conference on Machine Learning, pp. 1151–1158. ICML 2000 (2000)

    Google Scholar 

  34. Wu, C., Kreidieh, A., Parvate, K., Vinitsky, E., Bayen, A.M.: Flow: Architecture and Benchmarking for Reinforcement Learning in Traffic Control. arXiv: 1710.05465 (2017)

  35. Zheng, Y., Wang, J., Li, K.: Smoothing traffic flow via control of autonomous vehicles. IEEE Internet Things J. 7(5), 3882–3896 (2020). https://doi.org/10.1109/JIOT.2020.2966506

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urs Baumgart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baumgart, U., Burger, M. (2022). Optimal Control of Traffic Flow Based on Reinforcement Learning. In: Klein, C., Jarke, M., Helfert, M., Berns, K., Gusikhin, O. (eds) Smart Cities, Green Technologies, and Intelligent Transport Systems. VEHITS SMARTGREENS 2021 2021. Communications in Computer and Information Science, vol 1612. Springer, Cham. https://doi.org/10.1007/978-3-031-17098-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17098-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17097-3

  • Online ISBN: 978-3-031-17098-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics