Abstract
Nowadays, mobile devices have been used broadly to store and process sensitive data. To ensure confidentiality of the sensitive data, Full Disk Encryption (FDE) is often integrated in mainstream mobile operating systems like Android and iOS. FDE however cannot defend against coercive attacks in which the adversary can force the device owner to disclose the decryption key. To combat the coercive attacks, Plausibly Deniable Encryption (PDE) is leveraged to plausibly deny the very existence of sensitive data. However, most of the existing PDE systems for mobile devices are deployed at the block layer and suffer from deniability compromises.
Having observed that none of existing works in the literature have experimentally demonstrated the aforementioned compromises, our work bridges this gap by experimentally confirming the deniability compromises of the block-layer mobile PDE systems. We have built a mobile device testbed, which consists of a host computing device and a flash storage device. Additionally, we have deployed both the hidden volume-based PDE and the steganographic file system-based PDE at the block layer of our testbed and performed disk forensics to assess potential compromises on the raw NAND flash. Our experimental results confirm it is indeed possible for the adversary to compromise the block-layer PDE systems when the adversary can have access to the raw NAND flash in real world. We also discuss practical issues when performing such attacks in practice.
Keywords
- PDE
- Coercive attacks
- NAND flash
- Deniability compromises
- Experimental attacks
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptions





References
Android full disk encryption. https://source.android.com/security/encryption/. Accessed 21 Apr 2022
Index. https://www.cl.cam.ac.uk/~mgk25/stegfs/. Accessed 21 Apr 2022
Lpc-h3131. https://www.olimex.com/Products/ARM/NXP/LPC-H3131/. Accessed 21 Apr 2022
Photorec. https://www.cgsecurity.org/wiki/PhotoRec. Accessed 28 Mar 2022
stegfs. https://sourceforge.net/projects/stegfs/. Accessed 21 Apr 2022
Truecrypt. https://truecrypt.sourceforge.net/. Accessed 21 Apr 2022
Veracrypt. https://www.veracrypt.fr/code/VeraCrypt/. Accessed 21 Apr 2022
How to encrypt your devices (2017). https://spreadprivacy.com/how-to-encrypt-devices/. Accessed 21 Apr 2022
Anderson, R., Needham, R., Shamir, A.: The steganographic file system. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 73–82. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49380-8_6
Barker, A., Gupta, Y., Au, S., Chou, E., Miller, E., Long, D.: Artifice: data in disguise. In: Proceedings of the 36th International Conference on Massive Storage Systems and Technology (MSST 2020) (2020)
Blass, E.O., Mayberry, T., Noubir, G., Onarlioglu, K.: Toward robust hidden volumes using write-only oblivious ram. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 203–214. ACM (2014)
Breeuwsma, M., De Jongh, M., Klaver, C., Van Der Knijff, R., Roeloffs, M.: Forensic data recovery from flash memory. Small Scale Digital Device Forensics J. 1(1), 1–17 (2007)
Burdach, M.: Physical Memory Forensics. Black Hat, USA (2006)
Blass, E.O., Mayberry, T., Noubir, G., Onarlioglu, K.: User-friendly deniable storage for mobile devices. Comput. Secur. 72:163–174 (2018)
Chang, B., Wang, Z., Chen, B., Zhang, F.: MobiPluto: file system friendly deniable storage for mobile devices. In: Proceedings of the 31st annual computer security applications conference, pp. 381–390 (2015)
Chang, B., et al.: Mobiceal: Towards secure and practical plausibly deniable encryption on mobile devices. In: 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 454–465. IEEE (2018)
Chen, B.: Towards designing a secure plausibly deniable system for mobile devices against multi-snapshot adversaries-a preliminary design. arXiv preprint arXiv:2002.02379 (2020)
Chen, B., Chen, N.: Poster: a secure plausibly deniable system for mobile devices against multi-snapshot adversaries. In: 2020 IEEE Symposium on Security and Privacy Poster Session (2020)
Chen, C., Chakraborti, A., Sion, R.: INFUSE: Invisible plausibly-deniable file system for NAND flash. Proc. Priv. Enhancing Technol. 4, 239–254 (2020)
Chen, C., Chakraborti, A., Sion, R.: PEARL: plausibly deniable flash translation layer using WOM coding. In: The 30th Usenix Security Symposium (2021)
Chen, N., Chen, B., Shi, W.: MobiWear: a plausibly deniable encryption system for wearable mobile devices. In: Chen, B., Huang, X. (eds.) AC3 2021. LNICST, vol. 386, pp. 138–154. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80851-8_10
Google Code. Opennfm. https://code.google.com/p/opennfm/. Accessed 21 Apr 2022
Feng, W., et al.: MobiGyges: a mobile hidden volume for preventing data loss, improving storage utilization, and avoiding device reboot. Future Gener. Comput. Syst. 109, 158–171 (2020)
Guan, L., et al.: Supporting transparent snapshot for bare-metal malware analysis on mobile devices. In: Proceedings of the 33rd Annual Computer Security Applications Conference, pp. 339–349. ACM (2017)
Jia, S., Xia, L., Chen, B., Liu, P.: NFPS: adding undetectable secure deletion to flash translation layer. In: Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, pp. 305–315. ACM (2016)
Jia, S., Xia, L., Chen, B., Liu, P.: DEFTL: implementing plausibly deniable encryption in flash translation layer. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 2217–2229 (2017)
Liao, J., Chen, B., Shi, W.: TrustZone enhanced plausibly deniable encryption system for mobile devices. In: 2021 IEEE/ACM Symposium on Edge Computing (SEC), pp. 441–447. IEEE (2021)
McDonald, A.D., Kuhn, M.G.: StegFS: a steganographic file system for Linux. In: Pfitzmann, A. (ed.) IH 1999. LNCS, vol. 1768, pp. 463–477. Springer, Heidelberg (2000). https://doi.org/10.1007/10719724_32
Pang, H., Tan, K. L., Zhou, X.: StegFS: a steganographic file system. In: Proceedings 19th International Conference on Data Engineering (Cat. No. 03CH37405), pp. 657–667. IEEE (2003)
Peters, T.M., Gondree, M.A., Peterson, Z.N.: DEFY: a deniable, encrypted file system for log-structured storage. In: 22th Annual Network and Distributed System Security Symposium, NDSS (2015)
Skillen, A., Mannan, M.: On implementing deniable storage encryption for mobile devices. In: 20th Annual Network and Distributed System Security Symposium, NDSS 2013, San Diego, California, USA, 24–27 February 2013
Skillen, A., Mannan, M.: Mobiflage: deniable storage encryption for mobile devices. IEEE Trans. Dependable Secure Comput. 11(3), 224–237 (2014)
Tankasala, D., Chen, N., Chen, B.A.: A step-by-step guideline for creating a testbed for flash memory research via lpc-h3131 and opennfm (2020)
Yu, X., Chen, B., Wang, Z., Chang, B., Zhu, W.T., Jing, J.: MobiHydra: pragmatic and multi-level plausibly deniable encryption storage for mobile devices. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 555–567. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13257-0_36
Zhang, Q., Jia, S., Chang, B., Chen, B.: Ensuring data confidentiality via plausibly deniable encryption and secure deletion-a survey. Cybersecurity 1(1), 1 (2018)
Zhou, X., Pang, H., Tan, K.L.: Hiding data accesses in steganographic file system. In: Proceedings 20th International Conference on Data Engineering, pp. 572–583. IEEE (2004)
Acknowledgments
This work was supported by US National Science Foundation under grant number 1928349-CNS, 1928331-CNS, 1938130-CNS, and 2043022-DGE.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Chen, N., Chen, B., Shi, W. (2022). The Block-Based Mobile PDE Systems are Not Secure - Experimental Attacks. In: Lin, J., Tang, Q. (eds) Applied Cryptography in Computer and Communications. AC3 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 448. Springer, Cham. https://doi.org/10.1007/978-3-031-17081-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-17081-2_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-17080-5
Online ISBN: 978-3-031-17081-2
eBook Packages: Computer ScienceComputer Science (R0)
