Skip to main content

Reactor 3D Software Performance on Penetration and Perforation Problems

  • Chapter
  • First Online:
Behavior of Materials under Impact, Explosion, High Pressures and Dynamic Strain Rates

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 176))

Abstract

To verify the REACTOR3D software package, numerous methodological numerical calculations of the processes of solids dynamic interaction have been carried out, and the comparison of the calculation results with the existing experimental data has been performed. The problem of the penetration of a high-strength elongated rod made of hardened steel into a massive target made of aluminum alloy has been solved, and a non-monotonic dependence of the penetration depth of the rod on the velocity, like the one in the experiment, has been obtained. The results of calculations for the collision of compact bodies of arbitrary shape with a massive target fit with good accuracy in the self-similar modeling Zlatin curve in dimensionless coordinates L/H (crater depth to the striker length) and E/Y (kinetic energy to the yield point). Based on numerical calculations, the engineering formula for the hole diameter in a thin target at a high-speed collision (2–5 km/s) with a metal sphere has been modified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pradhan PK, Gupta NK, Ahmad S et al (2017) Numerical investigations of spherical projectile impact on 4 mm thick mild steel plate. Procedia Eng 173:109–115. https://doi.org/10.1016/j.proeng.2016.12.045

    Article  Google Scholar 

  2. Nguyen LH, Lässig TR, Ryan S et al (2015) Numerical modelling of ultra-high molecular weight polyethylene composite under impact loading. Procedia Eng 103:436–443. https://doi.org/10.1016/J.PROENG.2015.04.043

    Article  Google Scholar 

  3. Zhang CG, Batuev SP, Radchenko PA, Radchenko AV (2019) Modeling of fracture of spatial concrete structures under impulse loads. Mech Solids 54:883–889. https://doi.org/10.3103/S0025654419060049

    Article  Google Scholar 

  4. Radchenko AV, Radchenko PA (2014) Modeling of space debris interaction with an element of a solid-propellant rocket engine. Mech Solids 49:683–689. https://doi.org/10.3103/S0025654414060107

    Article  Google Scholar 

  5. Orlov MY, Glazyrin VP, Orlov YN (2020) Research of the projectile’s layout for penetration capability through metal targets. J Phys Conf Ser 1709:012001. https://doi.org/10.1088/1742-6596/1709/1/012001

    Article  Google Scholar 

  6. Johnson GR, Beissel SR, Gerlach CA (2015) A 3D combined particle-element method for intense impulsive loading computations involving severe distortions. Int J Impact Eng 84:171–180. https://doi.org/10.1016/j.ijimpeng.2015.06.006

    Article  Google Scholar 

  7. Kraus EI, Shabalin II (2016) Reactor2D: A tool for simulation of shock deformation. AIP Conf Proc 1770:030092. https://doi.org/10.1063/1.4964034

    Article  Google Scholar 

  8. Petrov IB, Favorskaya AV, Shevtsov AV et al (2015) Combined method for the numerical solution of dynamic three-dimensional elastoplastic problems. Dokl Math 91:111–113. https://doi.org/10.1134/S1064562415010202

    Article  MathSciNet  MATH  Google Scholar 

  9. Fedorov SV, Veldanov VA, Smirnov BE (2015) Numerical analysis of the effect of speed and strength of elongated high-density alloy strikers on the depth of their penetration into a steel obstacle. Bull Bauman Moscow State Techn Univ Ser “Mech Eng” 1:65–83

    Google Scholar 

  10. Fedorov SV, Veldanov V, Gladkom NA, Smirnov BE (2016) Numerical analysis of penetration into a steel obstacle of segmented and telescopic high-density alloy strikers. Bull Bauman Moscow State Techn Univ “Mech Eng” Ser 3:100–117

    Google Scholar 

  11. Abgaryan KK, Eliseev SV, Zhuravlev AA, Reviznikov DL (2017) High-speed implementation. Discrete-element modeling and experiment. Comput Res Simul 9:937–944

    Google Scholar 

  12. Abgaryan KK, Zhuravlev AA, Zagordan NL, Reviznikov DL (2015) Discrete-element modeling of ball introduction into a massive obstacle. Comput Res Simul 7:71–79

    Google Scholar 

  13. Watson E, Steinhauser MO (2017) Discrete particle method for simulating hypervelocity impact Phenomena. Materials (Basel) 10:379. https://doi.org/10.3390/ma10040379

    Article  Google Scholar 

  14. Haustein M, Gladkyy A, Schwarze R (2017) Discrete element modeling of deformable particles in YADE. SoftwareX 6:118–123. https://doi.org/10.1016/j.softx.2017.05.001

    Article  Google Scholar 

  15. Kraus EI, Shabalin II (2016) A few-parameter equation of state of the condensed matter. J Phys Conf Ser 774:012009. https://doi.org/10.1088/1742-6596/774/1/012009

    Article  Google Scholar 

  16. Kraus E, Shabalin I (2019) Melting behind the front of the shock wave. Therm Sci 23:519–524. https://doi.org/10.2298/TSCI19S2519K

    Article  Google Scholar 

  17. Kraus EI, Shabalin II (2021) A new model to determine the shear modulus and Poisson’s ratio of shock-compressed metals up to the melting point. High Press Res 41:353–365. https://doi.org/10.1080/08957959.2021.1976775

    Article  Google Scholar 

  18. Kraus EI, Shabalin II (2018) Simulation of fracture in 3D dynamic problems of collision of solid bodies. B: AIP conference proceedings. c 030165

    Google Scholar 

  19. Kraus EI, Shabalin II (2013) Impact loading of a space nuclear powerplant. Frat ed Integrità Strutt 7:138–150. https://doi.org/10.3221/IGF-ESIS.24.15

    Article  Google Scholar 

  20. Kraus EI, Shabalin II, Shabalin TI (2017) Automatic tetrahedral mesh generation for impact computations. B: AIP conference proceedings. c 030129

    Google Scholar 

  21. Wilkins ML (1999) Computer simulation of dynamic Phenomena. Springer, Berlin Heidelberg, Berlin, Heidelberg

    Book  MATH  Google Scholar 

  22. Fomin VM, Gulidov AI, Sapozhnikov GA, Shabalin II (1999) High-velocity solids interaction. SB RAS, Novosibirsk

    Google Scholar 

  23. Whiffin AC (1948) The use of flat-ended projectiles for determining dynamic yield stress—II. Tests on various metallic materials. Proc R Soc London Ser A Math Phys Sci 194:300–322. https://doi.org/10.1098/rspa.1948.0082

    Article  Google Scholar 

  24. Jones SE, Gillis PP, Foster JC (1987) On the equation of motion of the undeformed section of a Taylor impact specimen. J Appl Phys 61:499–502. https://doi.org/10.1063/1.338249

    Article  Google Scholar 

  25. Jones SE, Drinkard JA, Rule WK, Wilson LL (1998) An elementary theory for the Taylor impact test. Int J Impact Eng 21:1–13. https://doi.org/10.1016/s0734-743x(97)00036-5

    Article  Google Scholar 

  26. Sen S, Banerjee B, Shaw A (2020) Taylor impact test revisited: determination of plasticity parameters for metals at high strain rate. Int J Solids Struct 193–194:357–374. https://doi.org/10.1016/j.ijsolstr.2020.02.020

    Article  Google Scholar 

  27. Wilkins ML, Guinan MW (1973) Impact of cylinders on a rigid boundary. J Appl Phys 44:1200–1206. https://doi.org/10.1063/1.1662328

    Article  Google Scholar 

  28. Forrestal MJ, Piekutowski A J (2000) Penetration experiments with 6061-T6511 aluminum targets and spherical-nose steel projectiles at striking velocities between 0.5 and 3.0km/s. Int J Impact Eng 24:57–67.https://doi.org/10.1016/S0734-743X(99)00033-0

  29. Xiao YK, Wu H, Fang Q et al (2017) Hemispherical nosed steel projectile high-speed penetration into aluminum target. Mater Des 133:237–254. https://doi.org/10.1016/J.MATDES.2017.08.002

    Article  Google Scholar 

  30. Lu ZC, Wen HM (2018) On the penetration of high strength steel rods into semi-infinite aluminium alloy targets. Int J Impact Eng 111:1–10. https://doi.org/10.1016/J.IJIMPENG.2017.08.006

    Article  Google Scholar 

  31. Merzhievskii LA, Titov VM (1988) High-speed collision. Combust explos. Shock Waves 23:589–604. https://doi.org/10.1007/BF00756540

    Article  Google Scholar 

  32. Merzhievsky LA (1997) Crater formation in a plastic target under hypervelocity impact. Int J Impact Eng 20:557–568. https://doi.org/10.1016/s0734-743x(97)87444-1

    Article  Google Scholar 

  33. Shanbing Y, Gengchen S, Qingming T (1994) Experimental laws of cratering for hypervelocity impacts of spherical projectiles into thick target. Int J Impact Eng 15:67–77. https://doi.org/10.1016/S0734-743X(05)80007-7

    Article  Google Scholar 

  34. Sun Y, Shi C, Liu Z, Wen D (2015) Theoretical research progress in high-velocity/hypervelocity impact on semi-infinite targets. Shock Vib 2015:1–15. https://doi.org/10.1155/2015/265321

    Article  Google Scholar 

  35. Zlatin NA, Krasilshchikov AP, Mishin GI, Popov NN (1974) Ballistic installations and their application in experimental research. Nauka, Moscow

    Google Scholar 

  36. Kraus EI, Fomin VM, Shabalin II (2020) Construction of a unified curve in modeling the process of crater formation by compact projectiles of different shapes. J Appl Mech Tech Phys 61:855–865. https://doi.org/10.1134/S0021894420050211

    Article  MathSciNet  Google Scholar 

  37. Witt W, Loffler M (1998) The electromagnetic gun-closer to weapon system status. Mil Technol 80–86

    Google Scholar 

  38. Fomin VM, Postnikov BV, Sapozhnikov GA, Fomichev VP (2000) A multistep method for acceleration of bodies. Dokl Phys 45:489–492. https://doi.org/10.1134/1.1318997

    Article  Google Scholar 

  39. Medvedev AE, Shabalin AI (1999) Analytical representation of the N.A. simulation curve. Zlatin. Phys Mesomech 2:105–107

    Google Scholar 

  40. Kraus AE, Kraus EI, Shabalin II (2020) Impact resistance of ceramics in a numerical experiment. J Appl Mech Tech Phys 61:847–854. https://doi.org/10.1134/S002189442005020X

    Article  Google Scholar 

  41. Rosenberg Z, Bless S, Yeshurun Y, Okajima K (1988) A new definition of ballistic efficiency of brittle materials based on the use of thick backing plates. B: Chiem CY, Kunze H-D, Meyer LW (peд) Proceedings of IMPACT 87 symposium, impact loading and dynamic behavior of materials. DCM Informationsgesellschaft Verlag, cc 491–498

    Google Scholar 

  42. Rozenberg Z, Yeshurun Y (1988) The relation between ballistic efficiency and compressive strength of ceramic tiles. Int J Impact Eng 7:357–362. https://doi.org/10.1016/0734-743X(88)90035-8

    Article  Google Scholar 

  43. Moynihan TJ, Chou S-C, Mihalcin AL (2000) Application of the depth-of-penetration test methodology to characterize ceramics for personnel protection. Def Technol 15:829–836. https://doi.org/10.21236/ADA376698

  44. Buruchenko SK, Schäfer CM, Maindl TI (2017) Smooth particle hydrodynamics GPU-acceleration tool for asteroid fragmentation simulation. Procedia Eng 204:59–66. https://doi.org/10.1016/J.PROENG.2017.09.726

    Article  Google Scholar 

  45. Verma PN, Dhote KD (2018) Characterising primary fragment in debris cloud formed by hypervelocity impact of spherical stainless steel projectile on thin steel plate. Int J Impact Eng 120:118–125. https://doi.org/10.1016/j.ijimpeng.2018.05.003

    Article  Google Scholar 

  46. Dening D, Xiaowei C (2018) Material failure models in SPH simulation of debris cloud. Explos Shock Waves 38:948–956. https://doi.org/10.11883/BZYCJ-2017-0328

  47. Plassard F, Mespoulet J, Hereil P (2011) Hypervelocity impact of aluminium sphere against aluminium plate: experiment and LS-DYNA correlation. B: Proceedings of the 8th European LS-DYNA users conference. cc 23–34

    Google Scholar 

  48. Hosseini M, Abbas H (2006) Growth of hole in thin plates under hypervelocity impact of spherical projectiles. Thin-Walled Struct 44:1006–1016. https://doi.org/10.1016/j.tws.2006.08.024

    Article  Google Scholar 

  49. Kim J-T, Woo S-C, Kim J-Y, Kim T-W (2018) Debris dispersion analysis for the determination of impact conditions via traceback technology. Int J Impact Eng 122:472–487. https://doi.org/10.1016/J.IJIMPENG.2018.09.012

    Article  Google Scholar 

  50. Stilp AJ, Hohler V, Schneider E, Weber K (1990) Debris cloud expansion studies. Int J Impact Eng 10:543–553. https://doi.org/10.1016/0734-743X(90)90087-C

    Article  Google Scholar 

  51. Piekutowski AJ (2001) Debris clouds produced by the hypervelocity impact of nonspherical projectiles. Int J Impact Eng 26:613–624. https://doi.org/10.1016/S0734-743X(01)00122-1

    Article  Google Scholar 

  52. Piekutowski AJ (1990) A simple dynamic model for the formation of debris clouds. Int J Impact Eng 10:453–471. https://doi.org/10.1016/0734-743X(90)90079-B

    Article  Google Scholar 

Download references

Acknowledgements

The research was carried out within the state assignment of the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny I. Kraus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kraus, A.E., Kraus, E.I., Shabalin, I.I. (2023). Reactor 3D Software Performance on Penetration and Perforation Problems. In: Orlov, M.Y., Visakh P. M. (eds) Behavior of Materials under Impact, Explosion, High Pressures and Dynamic Strain Rates. Advanced Structured Materials, vol 176. Springer, Cham. https://doi.org/10.1007/978-3-031-17073-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17073-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17072-0

  • Online ISBN: 978-3-031-17073-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics