Skip to main content

New Approach to Assessment of Fire Hazards of Electrical Cables

  • Chapter
  • First Online:
Fire Hazards of Electrical Cables

Part of the book series: SpringerBriefs in Fire ((BRIEFSFIRE))

  • 199 Accesses

Abstract

A new approach to the assessment of the fire hazards of electrical cables is based on an assessment of their ignition parameters, the impact of their combustion on the surrounding area, the impact of a fire on the polymer components in the cable and the impact of fire on the ability of the cable to power critical devices. The ignition parameters of electrical cables that quantify their ignitability include ignition temperature (surface temperature at moment of ignition), critical heat flux (minimum heat flux that causes cable ignition in a specified time), critical electrical current (electrical current that causes cable ignition) and apparent thermal inertia (thermally thick cables) or the apparent product of density and thermal capacity (thermally thin or intermediate cables). The impact of a cable fire on the surrounding area is quantified by the released heat (heat release rate and total heat release), toxicity of combustion products (amount of carbon monoxide and dioxide released and the amount of oxygen consumed) and reduction of visibility in the affected fire compartment (smoke extinction area). For a comprehensive fire hazard assessment of cables, it is also necessary to evaluate the impact of a fire on the polymer components of a cable and its ability to power critical devices under fire conditions. Degradation of polymer components (under fire conditions) usually leads to a decrease in insulation resistance and may cause cable failure or electric shock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Slovak Office of Standards, Metrology and Testing (2012) STN EN 50399:2012/A1:2017. Common test methods for cables under fire conditions. Heat release and smoke production measurement on cables during flame spread test. Test apparatus, procedures, results

    Google Scholar 

  2. United Nations (2019) Globally harmonized system of classification and labelling of chemicals, 8th edn. United Nations, New York

    Book  Google Scholar 

  3. Zachar M, Čabalová I, Kačíková D, Zacharová L (2021) The effect of heat flux to the fire-technical and chemical properties of spruce wood (Picea abies l). Materials 14:4989. https://doi.org/10.3390/ma14174989

  4. Wu D, Norman F, Verplaetsen F, Van den Bulck E (2016) Experimental study on the minimum ignition temperature of coal dust clouds in oxy-fuel combustion atmospheres. J Hazard Mater 307:274–280. https://doi.org/10.1016/j.jhazmat.2015.12.051

    Article  Google Scholar 

  5. Gaff M, Čekovská H, Bouček J, Kačíková D, Kubovský I, Tribulová T, Zhang L, Marino Z, Kačík F (2021) Flammability characteristics of thermally modified Meranti wood treated with natural and synthetic fire retardants. Polymers 13:2160. https://doi.org/10.3390/polym13132160

    Article  Google Scholar 

  6. Babrauskas V (2003) Ignition handbook. Fire Science and Technology, Issaquah

    Google Scholar 

  7. Vandličková M, Marková I, Osvaldová LM, Gašpercová S, Svetlík J, Vraniak J (2020) Tropical wood dusts: granulometry, morfology and ignition temperature. Appl Sci 10:7608. https://doi.org/10.3390/app10217608

    Article  Google Scholar 

  8. Hshieh FY, Richards GN (1990) The effect of preheating of wood on ignition temperature of wood char. Combust Flame 80:395–398. https://doi.org/10.1016/0010-2180(90)90115-8

    Article  Google Scholar 

  9. Fangrat J, Hasemi Y, Yoshida M, Hirata T (1996) Surface temperature at ignition of wooden based slabs. Fire Saf J 27:249–259. https://doi.org/10.1016/S0379-7112(96)00046-X

    Article  Google Scholar 

  10. Vandličková M, Marková I, Osvaldová LM, Gašpercová S, Svetlík J (2020) Evaluation of African padauk (Pterocarpus soyauxii) explosion dust. Bioresources 15:401–414. https://doi.org/10.15376/biores.15.1.401-414

  11. Chen Z, Zhang Z, Fei J, Huang X (2014) Flame-retardant glass fiber reinforced PA 6 with high glow wire ignition temperature and comparative tracking index. China Synth Resin Plast. 31:62–64

    Google Scholar 

  12. Acquasanta F, Berti C, Colonna M, Fiorini M, Karanam S (2011) Study of glow wire ignition temperature (GWIT) and comparative tracking index (CTI) performances of engineering thermoplastics and correlation with material properties. Polym Degrad Stab 96:566–573. https://doi.org/10.1016/j.polymdegradstab.2010.12.024

    Article  Google Scholar 

  13. Acquasanta F, Berti C, Colonna M, Fiorini M, Karanam S (2011) Glow wire ignition temperature (GWIT) and comparative tracking index (CTI) of glass fibre filled engineering polymers, blends and flame retarded formulations. Polym Degrad Stab 96:2098–2103. https://doi.org/10.1016/j.polymdegradstab.2011.09.022

    Article  Google Scholar 

  14. Guillaume E, Yardin C, Aumaitre S, Rumbau V (2011) Uncertainty determination of glow-wire test for ignition of materials. J Fire Sci 29:509–518. https://doi.org/10.1177/0734904111407024

    Article  Google Scholar 

  15. NEČAS A, Martinka J, Rantuch P, Wachter I, ŠTEFKO T (2021) Impact of the electric cables installation on the ignition parameters of the spruce wood surface. Wood Res 66(5):732–745. https://doi.org/10.37763/wr.1336-4561/66.5.732745

  16. Babrauskas V, Parker WJ (1987) Ignitability measurements with the cone calorimeter. Fire Mater 11:31–43. https://doi.org/10.1002/fam.810110103

    Article  Google Scholar 

  17. International Organization for Standardization (2015) ISO 5660-1:2015. Reaction-to-fire tests—heat release, smoke production and mass loss rate—part 1: heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement)

    Google Scholar 

  18. Lawson DI, Simms DL (1952) The ignition of wood by radiation. Br J Appl Phys 3:288–292

    Article  Google Scholar 

  19. Buschman AJ (1961) Ignition of some woods exposed to low level thermal radiation. National Bureau of Standards Department of Commerce, Washington

    Book  Google Scholar 

  20. Keller JA, Baer AD, Ryan NW (1966) Ignition of ammonium perchlorate composite propellants by convective heating. AIAA J 4:1358–1365

    Article  Google Scholar 

  21. Simms DL (1963) On the pilot ignition of wood by radiation. Combust Flame 7:253–261

    Article  Google Scholar 

  22. Kanury AM (1972) Ignition of cellulosic materials: a review. Fire Res Abstracts Rev 14:24–52

    Google Scholar 

  23. Mikkola E, Wichman IS (1989) On the thermal ignition of combustible materials. Fire Mater 14:87–96. https://doi.org/10.1002/fam.810140303

    Article  Google Scholar 

  24. Janssens M (1991) Fundamental thermophysical characteristics of wood and their role in enclosure fire growth. Ph. D. thesis, Ghent University, Ghent

    Google Scholar 

  25. Janssens M (1989) Use of bench-scale piloted ignition data for mathematical fire models. In: Proceedings of a conference on fires in buildings. Interscience Communications, London

    Google Scholar 

  26. Janssens M (1991) Piloted ignition of wood: a review. Fire Mater 15:151–167. https://doi.org/10.1002/fam.810150402

    Article  Google Scholar 

  27. Spearpoint MJ, Quintiere JG (2001) Predicting the ignition of wood in the cone calorimeter—effect of species, grain orientation and heat flux. Fire Saf J 36:391–415. https://doi.org/10.1016/S0379-7112(00)00055-2

    Article  Google Scholar 

  28. Delichatsios MA, Panagiotou TH, Kiley F (1991) The use of time to ignition data for characterizing the thermal inertia and the minimum (critical) heat flux for ignition or pyrolysis. Combust Flame 84:323–332. https://doi.org/10.1016/0010-2180(91)90009-Z

    Article  Google Scholar 

  29. Shi L, Chew MYL (2013) Fire behaviors of polymers under autoignition conditions in a cone calorimeter. Fire Saf J 61:243–253. https://doi.org/10.1016/j.firesaf.2013.09.021

    Article  Google Scholar 

  30. Shi L, Chew MYL (2013) Experimental study of woods under external heat flux by autoignition: ignition time and mass loss rate. J Therm Anal Calorim 111:1399–1407. https://doi.org/10.1007/s10973-012-2489-x

    Article  Google Scholar 

  31. Xu Q, Chen L, Harries KA, Zhang F, Liu Q, Feng J (2015) Combustion and charring properties of five common constructional wood species from cone calorimeter tests. Constr Build Mater 96:416–427. https://doi.org/10.1016/j.conbuildmat.2015.08.062

    Article  Google Scholar 

  32. Martinka J, Rantuch P, Sulová J, Martinka F (2019) Assessing the fire risk of electrical cables using a cone calorimeter. J Therm Anal Calorim 135(6):3069–3083. https://doi.org/10.1007/s10973-018-7556-5

  33. Martinka J, Rantuch P, Rolinec M, Pokorny J, Balog K, Kucera P, Rybakowski M, Sulova J (2019) A new approach to the assessment of the reduction in visibility caused by fires of electrical cables. Safety 5(3) 44.https://doi.org/10.3390/safety5030044

  34. Mozer V (2013) Modelling fire severity and evacuation in tunnels. Commun - Sci lett Univ Zilina 15(4):85–90 https://doi.org/10.26552/com.C.2013.4.85-90

  35. Wang Y, Goransson U, Holmstedt G, Omrane A. (2005) Model for prediction of temperature in steel structure protected by intumescent coating based on tests in the cone calorimeter. Fire Saf Sci 8:235–246.https://doi.org/10.3801/IAFSS.FSS.8-235

  36. Salem A (2010) Fire engineering tools used in consequence analysis. Ships Offshore Struct 5(2):155-187.https://doi.org/10.1080/17445300903331826

  37. Slovak Office of Standards, Metrology and Testing (2019) STN EN 13501-6:2019. Fire classification of construction products and building elements—part 6: classification using data from reaction to fire tests on power, control and communication cables

    Google Scholar 

  38. Wang Z, Zhou T, Wei R, Wang J (2020) Experimental study of flame spread over PE-insulated single copper core wire under varying pressure and electric current. Fire Mater 44:835–843

    Article  Google Scholar 

  39. Lim SJ, Park SH, Park J, Fujita O, Keel SI, Chung SH (2017) Flame spread over inclined electrical wires with AC electric fields. Combust Flame 185:82–92

    Article  Google Scholar 

  40. Wang Z, Wang J (2020) A comprehensive study on the flame propagation of the horizontal laboratory wires and flame-retardant cables at different thermal circumstances. Process Saf Environ Prot 139:325–333

    Article  Google Scholar 

  41. An W, Wang T, Liang K, Tang Y, Wang Z (2020) Effects of interlayer distance and cable spacing on flame characteristics and fire hazard of multilayer cables in utility tunnel. Case Stud Therm Eng 22:100784. https://doi.org/10.1016/j.csite.2020.100784

    Article  Google Scholar 

  42. American Society for Testing and Materials (2018) ASTM E1321—18. Standard test method for determining material ignition and flame spread properties

    Google Scholar 

  43. Janssens M (2009) Determining flame spread properties from cone calorimeter measurements: general concepts. In: Babrauskas V, Grayson SJ (eds) Heat release in fires. Interscience communications, London, pp 265–281

    Google Scholar 

  44. Green AR (2009) Determining flame spread properties from cone calorimeter measurements: wind-aided spread over horizontal surfaces. In: Babrauskas V, Grayson SJ (eds) Heat release in fires. Interscience Communications, London, pp 283–291

    Google Scholar 

  45. Jianmin Q (2009) Determining flame spread properties from cone calorimeter measurements: prediction of FIFT data from cone calorimeter measurements. In: Babrauskas V, Grayson SJ (eds) Heat release in fires. Interscience Communications, London, pp 293–306

    Google Scholar 

  46. Wickström U, Göransson U (1992) Full-scale/bench-scale correlations of wall and ceiling linings. Fire Mater 16:15–22

    Article  Google Scholar 

  47. Kokkala MA, Thomas PH, Karlsson B (1993) Rate of heat release and ignitability indices for surface linings. Fire Mater 17:209–216

    Article  Google Scholar 

  48. Petrella RV (1994) The assessment of full-scale fire hazards from cone calorimeter data. J Fire Sci 12:14–43

    Article  Google Scholar 

  49. Östman BAL, Tsantaridis LD (1994) Correlation between cone calorimeter data and time to flashover in the room fire test. Fire Mater 18:205–209

    Article  Google Scholar 

  50. Xu Q, Majlingova A, Zachar M, Jin C, Jiang Y (2012) Correlation analysis of cone calorimetry test data assessment of the procedure with tests of different polymers. J Therm Anal Calorim 110:65–70

    Article  Google Scholar 

  51. Hansen AS, Hovde PJ (2002) Prediction of time to flashover in the ISO 9705 room corner test based on cone calorimeter test results. Fire Mater 26:77–86

    Article  Google Scholar 

  52. C/VM2 (2014) Verification method: framework for fire safety design, Wellington, New Zealand, The Ministry of Business, Innovation and Employment

    Google Scholar 

  53. Martinka J, Mantanis GI, Lykidis C, Antov P, Rantuch P (2021) The effect of partial substitution of polyphosphates by aluminium hydroxide and borates on the technological and fire properties of medium density fibreboard. Wood Mater Sci Eng. https://doi.org/10.1080/17480272.2021.1933175

  54. De Silva K, Ray S, Blache R, Taylor M (2017) Evaluation of fire performance of organic fire retardant free acrylic based coatings applied on various building materials by cone calorimetric method. Fire Mater 41(2):169–179.https://doi.org/10.1002/fam.2376

  55. Xu Q, Hristov J, Cao L, Que X (2011) Time to flashover of a vinyl based lining material: cone calorimeter experiments. Therm Sci 15(3):785–792.https://doi.org/10.2298/TSCI100621003X

  56. Slovak Office of Standards, Metrology and Testing (2012) STN EN 60695-7-3:2012. Fire hazard testing. Part 7-3: toxicity of fire effluent. User and interpretation of test results

    Google Scholar 

  57. Permentier K, Vercammen S, Soetaert S, Schellemans C (2017) Carbon dioxide poisoning: a literature review of an often forgotten cause of intoxication in the emergency department. Int J Emerg Med 10:14. https://doi.org/10.1186/s12245-017-0142-y

    Article  Google Scholar 

  58. Karlsson B, Quintiere JG (1999) Enclosure fire dynamics. CRC Press, Boca Raton

    Book  Google Scholar 

  59. LaMalva K, Hopkin D (2021) International handbook of structural fire engineering. Springer Nature, Cham

    Google Scholar 

  60. Drysdale D (2011) An introduction to fire dynamics, 3rd edn. Wiley, Hoboken

    Book  Google Scholar 

  61. Pokorny J, Heinzova Z, Kucera P, Brumarova L, Kavan S (2021) Current trends in the field of safety ventilation of garages. Vytapeni Vetrani Instalace 30:30–36

    Google Scholar 

  62. Jin T (1978) Visibility through fire smoke. J Fire Flammabl 9:135–157

    Google Scholar 

  63. Yamada T, Akizuki Y (2016) Visibility and human behavior in fire smoke. Hurley MJ (2016) SFPE handbook of fire protection engineering, 5th edn. Springer, New York, pp 2181–2206

    Chapter  Google Scholar 

  64. Slovak Office of Standards, Metrology and Testing (2011) STN EN 60695-6-1:2005/A1:2011. Fire hazard testing. Part 6-1: smoke obscuration—general guidance

    Google Scholar 

  65. Martinka J, Nečas A, Rantuch P (2022) The recognition of selected burning liquids by convolutional neural networks under laboratory conditions. J Therm Anal Calorim 147(10):5787–5799. https://doi.org/10.1007/s10973-021-10903-2

  66. PlastikCity (2021) Plastic material melt & mould temperatures. PlastikCity, Claybrooke Parva. https://www.plastikcity.co.uk/useful-stuff/material-melt-mould-temperatures. Accessed 12 Nov 2021

  67. Harper CA (2004) Handbook of building materials for fire protection. McGraw-Hill, New York

    Google Scholar 

  68. Spade RL (1963) A study of temperature effects on insulation resistance values of conductor insulating materials. In: Proceedings of EI electrical insulation conference materials and application. https://doi.org/10.1109/EIC.1963.7461760

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Martinka .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martinka, J. (2022). New Approach to Assessment of Fire Hazards of Electrical Cables. In: Fire Hazards of Electrical Cables. SpringerBriefs in Fire. Springer, Cham. https://doi.org/10.1007/978-3-031-17050-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17050-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17049-2

  • Online ISBN: 978-3-031-17050-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics