Skip to main content

Fault Scenarios of Electrical Cables

  • Chapter
  • First Online:
Fire Hazards of Electrical Cables

Part of the book series: SpringerBriefs in Fire ((BRIEFSFIRE))

Abstract

The fault scenarios of electrical cables are key aspects of their fire risk analysis. Before any fire scenarios analysis the effects associated with current flow in cables must be described. The effects that should be taken into account (during a fire risk analysis) include skin effect, proximity effect, voltage drop, insulation resistance and Joule heating. Skin effect and proximity effect cause a non-uniform distribution of current density across the cross-section of a conductor. Voltage drop increases as temperature increases (this dependence can cause a voltage drop greater than the specified limit in a cable with a declared circuit integrity under fire conditions). The insulation resistance determines the leakage current from line (phase conductor) to protective earth (ground conductor) and a significant decrease can cause a short circuit or arc. Joule heating is determined by the conductor resistance and the square of the value of electrical current. The main fault scenarios of electrical cables that may cause a fire include short circuit, overload, increased contact resistance and electrical arc. The most dangerous scenario is an increased contact resistance because there are no protective devices that protect against this scenario. The final significant fault scenario is the loss of power to critical appliances (for example, emergency lift). This scenario only applies to cables with a declared circuit integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hyperphysics (2021) Skin effect in AC conduction. Georgia State University, Atlanta. http://hyperphysics.phy-astr.gsu.edu/hbase/electric/skineffect.html). Accessed 6 Oct 2021

  2. Hayt WH, Buck JA (2012) Engineering electromagnetics, 8th edn. McGraw-Hill, New York

    Google Scholar 

  3. Engineering TollBox (2001) Permeability: electromagnetism and formation of magnetic fields. https://www.engineeringtoolbox.com/permeability-d_1923.html. Accessed 6 Oct 2021

  4. Dowell PL (1966) Effects of eddy currents in transformer windings. Proc Inst Electr 113:1387–1394. https://doi.org/10.1049/piee.1966.0236

    Article  Google Scholar 

  5. Holguin FA, Asensi R, Prieto R, Cobos JA (2014) Simple analytical approach for the calculation of winding resistance in gapped magnetic components. In: Proceedings of IEEE applied power electronics conference and exposition. https://doi.org/10.1109/APEC.2014.6803672

  6. Theory (2021) Theory of homogeneous lines. http://files.gamepub.sk/statnice/%C5%A1t%C3%A1tnice/Statnicove%20okruhy/8_TLKV.pdf. Accessed 6 Oct 2021

  7. Zeng GL, Zeng M (2021) Electric circuits: a concise, conceptual tutorial. Springer Nature, Cham

    Google Scholar 

  8. Bigelow TA (2020) Electric circuits, systems, and motors. Springer Nature, Cham

    Google Scholar 

  9. Makarov SN, Ludwig R, Bitar SJ (2016) Practical electrical engineering. Springer Nature, Cham

    Google Scholar 

  10. Nathan I (2015) Engineering electromagnetics, 3rd edn. Springer Nature, Cham

    Google Scholar 

  11. Tirpák J (2011) Electromagnetism. Iris, Bratislava

    Google Scholar 

  12. Appell J, Hien NT, Petrova L, Pryadko I (2021) Systems with non-smooth inputs: mathematical models of hysteresis phenomena, biological systems, and electric circuits. De Gruyter, Berlin. https://doi.org/10.1515/9783110709865

  13. Darren A (2012) Electrical engineering 101, 3rd edn. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-386001-9.00010-6

  14. Simonyi K (1963) Foundations of electrical engineering. Elsevier, Amsterdam

    MATH  Google Scholar 

  15. Bayliss C, Hardy B (2011) Transmission and distribution electrical engineering, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  16. Attenborough M (2003) Mathematics for electrical engineering and computing. Elsevier, Amsterdam

    Google Scholar 

  17. Edvard C (2017) Voltage drop calculation methods with examples explained in details. Electrical engineering portal, Belgrade. https://electrical-engineering-portal.com/voltage-drop-calculation-methods. Accessed 8 Oct 2021

  18. Emi S (2021) Wire pair capacitance. Emi Software, Sedona. https://www.emisoftware.com/calculator/wire-pair-capacitance/. Accessed 13 Oct 2021

  19. Parallel (2021) Parallel wires. https://web.mst.edu/~kosbar/ee3430/ff/transmissionlines/LC_of_lines/docs_two_parallel_wires/index.html. Accessed 22 Nov 2021

  20. Clayton RP (2008) Analysis of multiconductor transmission lines, 2nd edn. Wiley, Hoboken

    Google Scholar 

  21. SpecialChem (2021) Dielectric constant. https://omnexus.specialchem.com/polymer-properties/properties/dielectric-constant#PA-PC. Accessed 22 Nov 2021

  22. Moore GF (1997) BICC electric cables handbook, 3rd edn. Blackwell Science, Oxford

    Google Scholar 

  23. Slovak Office of Standards, Metrology and Testing (2012) STN 33 2000-5-52:2012. Low-voltage electrical installations. Part 5-52: selection and erection of electrical equipment—wiring systems

    Google Scholar 

  24. International Electrotechnical Commission (2009) IEC 60364-5-52:2009. Low-voltage electrical installations. Part 5-52: Selection and erection of electrical equipment—wiring systems

    Google Scholar 

  25. Dvořák O, Michut P, Voříšek K (2011) Fire investigation and assessment of hazardous effect of fires on persons, property and environment: DVU No. 7 test methods and equipment for identification of technical fails on selected electrical armatures and electrical equipment/devices as fire causes and/or subsequent explosion. Ministry of Interior of the Czech Republic, Prague

    Google Scholar 

  26. Fanchi RJ (2004) Energy: technology and directions for the future. Elsevier, Amsterdam

    Google Scholar 

  27. EETech (2016) Coil inductance calculator. EETech Media, Boise. https://www.allaboutcircuits.com/tools/coil-inductance-calculator/. Accessed 16 Oct 2021

  28. Wheeler HA (1928) Simple inductance formulas for radio coils. Proc Inst Radio Eng 16(10):1398–1400

    Google Scholar 

  29. Wheeler HA (1942) Formulas for the skin effect. Proc Inst Radio Eng 30(9):412–424

    Google Scholar 

  30. Terje S (2012) Multilayer air core inductor design calculator. https://www.circuits.dk/multilayer-air-core-inductor/. Accessed 16 Oct 2021

  31. ARRL (2016) The ARRL handbook for radio communications, 94th edn. American Radio Relay League, Newington

    Google Scholar 

  32. Polykrati AD, Karagiannopoulos CG, Bourkas PD (2004) Thermal effect on electric power network components under short-circuit currents. Electr Power Syst Res 72:261–267

    Article  Google Scholar 

  33. Bahyl V, Igaz R (2010) Civil engineering physics. Technical University in Zvolen, Zvolen

    Google Scholar 

  34. Taraba B, Behulova M, Kravarikova M (2007) Fluid mechanics thermomechanics: a collection of examples. Slovak University of Technology in Bratislava, Trnava

    Google Scholar 

  35. Paschen F (1889) Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz [About the potential difference required for spark transfer in air, hydrogen and carbon dioxide at different pressures]. Ann Phys 273:69–96

    Article  Google Scholar 

  36. Massarczyk R, Chu P, Elliott SR, Rielage K (2017) Paschen’s law studies in cold gases. J Instrum 12:1–12. https://doi.org/10.1088/1748-0221/12/06/P06019

    Article  Google Scholar 

  37. Babrauskas V (2021) Electrical fires and explosions. Fire science and technology, New York

    Google Scholar 

  38. Bazelyan EM, Raizer YP (1998) Spark discharge. CRC Press, Boca Raton

    Google Scholar 

  39. Berzak LF Dorfman SE, Smith SP (2006) Paschen’s law in air and noble gases. http://www-eng.lbl.gov/~shuman/XENON/REFERENCES&OTHER_MISC/paschen_report.pdf. Accessed 18 Oct 2021

  40. Naidu MS, Kamaraju V (1995) High voltage engineering, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  41. Raju GG (2005) Gaseous electronics: theory and practice. CRC Press, Boca Raton

    Book  Google Scholar 

  42. Martinka J, Štefko T, Wachter I, Rantuch P (2020) Impact of electrical cables embedded into oriented strand board on critical heat flux. Wood Res 65(2):257–270.https://doi.org/10.37763/wr.1336-4561/65.2.257270

  43. Martinka J, Balog K, Chrebet T, Hroncová E, Dibdiaková J (2012) Effect of oxygen concentration and temperature on ignition time of polypropylene. J Therm Anal Calorim 110(1):485–487. https://doi.org/10.1007/s10973-012-2546-5

  44. Martinka J (2018) Toxicity of combustion products. In: Martinka J (ed) Fire risk of materials and combustible liquids, 1st edn. Vydavatelstvi a Nakladatelstvi Ales Cenek, Plzen, pp. 65–100

    Google Scholar 

  45. Fujita O, Kyono T, Kido Y, Ito H, Nakamura Y (2011) Ignition of electrical wire insulation with short-term excess electric current in microgravity. Proc Combust Inst 33(2):2617–2623. S1540748910002166. https://doi.org/10.1016/j.proci.2010.06.123

  46. Meinier R, Sonnier R, Zavaleta P, Suard S, Ferry L (2018) Fire behavior of halogen-free flame retardant electrical cables with the cone calorimeter. J. Hazard. Mater 342:306–316 S0304389417306192. https://doi.org/10.1016/j.jhazmat.2017.08.027

  47. Gillian F, Dekanek J (2016) Fire safety of structures not only for electrical engineers, 2nd edn. Slovak Electrotechnical Association—Chamber of Electrical Engineers of Slovakia, Bratislava

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Martinka .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martinka, J. (2022). Fault Scenarios of Electrical Cables. In: Fire Hazards of Electrical Cables. SpringerBriefs in Fire. Springer, Cham. https://doi.org/10.1007/978-3-031-17050-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17050-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17049-2

  • Online ISBN: 978-3-031-17050-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics