Skip to main content

Description and the Parameters of Electrical Cables

  • Chapter
  • First Online:
Fire Hazards of Electrical Cables

Part of the book series: SpringerBriefs in Fire ((BRIEFSFIRE))

  • 224 Accesses

Abstract

The type and parameters of electrical cables have a significant impact on their fire hazards. Electrical cables are divided into two main categories: power cables (current transmission) and signal cables (data, control and signal cables). Optical cables belong to a separate group. From a design point of view, electrical cables are divided into axial and coaxial cables. Most electrical cables can be ignited (by an external heat source), allow the spread of flame over their surfaces and contribute to the development of a fire similar to most organic substances, materials and products. In addition, electrical power cables may be ignition sources or the cause of a fire (due to Joule heating). The most important parameters of electrical cables are the conductor material (copper or aluminium), the cross-sectional area of the conductors, the type of conductors (solid or stranded) and the polymer components used (insulation, bedding and sheath). The conductor material and its cross-sectional area determines the electrical resistance of the cable. The type of polymer components used determines the insulation resistance and its reaction to fire class. The conductor material and cross-sectional area, together with the polymer components determines the current carrying capacity of the cable and the resistance of the cable to physical (for example, temperature or ultraviolet radiation) or chemical (for example, acids and hydroxides) factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brenci M, Guzzi D, Mencaglia A, Mignani AG (1993) An optical fiber sensor system for fire detection in hazardous environments. Measurement 12:183–190

    Article  Google Scholar 

  2. Ishii H, Kawamura K, Ono T, Megumi H, Kikkawa A (1997) A fire detection system using optical fibres for utility tunnels. Fire Saf J 29:87–98

    Article  Google Scholar 

  3. Kumar R, Binetti L, Nguyen TH, Alwis LSM, Sun T, Grattan KTV (2020) Optical fibre thermometry using ratiometric green emission of an upconverting nanoparticle-polydimethylsiloxane composite. Sens Actuator A Phys 312:112083. https://doi.org/10.1016/j.sna.2020.112083

    Article  Google Scholar 

  4. Slovak Office of Standards, Metrology and Testing (2009) STN EN 62 491:2009. Industrial systems, installations and equipment and industrial products: labelling of cables and cores

    Google Scholar 

  5. Slovak Office of Standards, Metrology and Testing (2012) STN EN 60038:2012. CENELEC standard voltages

    Google Scholar 

  6. Cadick J (1998) Cables and wirings, 2nd edn. Delmar Cengage Learning, New York

    Google Scholar 

  7. Slovak Office of Standards, Metrology and Testing (2005) STN EN 60228:2005. Conductors of insulated cables

    Google Scholar 

  8. Slovak Office of Standards, Metrology and Testing (2012) STN 33 2000-5-52:2012. Low-voltage electrical installations—part 5-52: selection and erection of electrical equipment: wiring systems

    Google Scholar 

  9. Haynes WM (2015) Handbook of chemistry and physics, 96th edn. CRC Press, Boca Raton

    Google Scholar 

  10. Alotaibi SA, Slimani Y, Hannachi E, Almessiere MA, Yasin G, Al-qwairi FO, Iqbal M, Azzouz FB (2021) Intergranular properties of polycrystalline YBa2Cu3O7−δ superconductor added with nanoparticles of WO3 and BaTiO3 as artificial pinning centers. Ceram Int 47(24):34260–34268. https://doi.org/10.1016/j.ceramint.2021.08.336

    Article  Google Scholar 

  11. Hirsch JE, Marsiglio F (2021) Meissner effect in nonstandard superconductors. Phys C Supercond 587:1353896. https://doi.org/10.1016/j.physc.2021.1353896

    Article  Google Scholar 

  12. Sang LN, Li Z, Yang GS, Yue ZJ, Liu JX, Cai CB, Wu T, Dou SX, Ma YW, Wang XL (2021) Pressure effects on iron-based superconductor families: superconductivity, flux pinning and vortex dynamics. Mater Today Phys 19:100414. https://doi.org/10.1016/j.mtphys.2021.100414

    Article  Google Scholar 

  13. Idczak R, Nowak W, Babij M, Tran WH (2021) Influence of severe plastic deformation on superconducting properties of Re and In. Phys C Supercond 590:1353945. https://doi.org/10.1016/j.physc.2021.1353945

    Article  Google Scholar 

  14. Lojka M, Antončík F, Sedmidubský D, Hlásek T, Wild J, Pavlů J, Jankovský O, Bartůněk V (2020) Phase-stable segmentation of BSCCO high-temperature superconductor into micro-, meso-, and nano-size fractions. J Mater Res Technol 9:12071–12079. https://doi.org/10.1016/j.jmrt.2020.08.107

    Article  Google Scholar 

  15. The London Metal Exchange (2021) LME aluminium official prices graph. https://www.lme.com/en/Metals/Non-ferrous/LME-Aluminium#Price+graphs. Accessed 18 Nov 2021

  16. The London Metal Exchange (2021) LME copper official prices graph. https://www.lme.com/en/Metals/Non-ferrous/LME-Copper#Price+graphs. Accessed 18 Nov 2021

  17. Heim AI (1957) Corrosion resistance of copper and copper alloys. Ind Eng Chem 49:63–66. https://doi.org/10.1021/i650572a754

    Article  Google Scholar 

  18. Schütze M, Feser R, Bender R (2011) Corrosion resistance of copper and copper alloys. DECHEMA in cooperation with WILEY-VCH, Frankfurt

    Google Scholar 

  19. Vargel C (2020) Corrosion of aluminium, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  20. Oguzie EE (2007) Corrosion inhibition of aluminium in acidic and alkaline media by Sansevieria trifasciata extract. Corros Sci 49:1527–1539. https://doi.org/10.1016/j.corsci.2006.08.009

    Article  Google Scholar 

  21. Berlanga-Labari C, Biezma-Moraleda M, Rivero P (2020) Corrosion of cast aluminum alloys: a review. Metals 10:1384. https://doi.org/10.3390/met10101384

    Article  Google Scholar 

  22. Copper Development Association (2007) Corrosion resistance of copper and copper alloys: CDA Publication No 106. https://www.justmfg.com/images/pub-106.pdf. Accessed 18 Nov 2021

  23. Davis JR (1999) Corrosion of aluminum and aluminum alloys. ASM International, Novelty. https://www.asminternational.org/documents/10192/1849770/06787G_Sample.pdf/c4151917-99fc-46e8-a310-d5578d0af160. Accessed 18 Nov 2021

  24. Heidarzadeh A, Jabbari M, Esmaily M (2015) Prediction of grain size and mechanical properties in friction stir welded pure copper joints using a thermal model. Int J Adv Manuf Technol 77:1819–1829. https://doi.org/10.1007/s00170-014-6543-7

    Article  Google Scholar 

  25. Zhukov IA, Kozulin AA, Khrustalyov AP, Kahidze NI, Khmeleva MG, Moskvichev EN, Lychagin DV, Vorozhtsov AB (2019) Pure aluminum structure and mechanical properties modified by Al2O3 nanoparticles and ultrasonic treatment. Metals 9:1199. https://doi.org/10.3390/met9111199

    Article  Google Scholar 

  26. Wang Y, Zhu L, Niu G, Mao J (2021) Conductive al alloys: the contradiction between strength and electrical conductivity. Adv Eng Mater 23:2001249. https://doi.org/10.1002/adem.202001249

    Article  Google Scholar 

  27. Nener RM, Haller SW (2001) Improved electrical conductivity and high strength aluminium alloy composite material and methods of manufacturing and use. World Patent 01(56782):A3

    Google Scholar 

  28. Besel FA (1972) High conductivity aluminium alloys. US patent 3770515

    Google Scholar 

  29. Belden (2013) Cabling solutions for industrial applications. Belden, Saint-Louis. https://info.belden.com/hubfs/resources/technical/catalogs/cabling-solutions-for-industrial-appliances-catalog.pdf. Accessed 30 Sept 2021

  30. Slovak Office of Standards, Metrology and Testing (2015) STN EN 60702-1:2002/A1:2015. Mineral insulated cables and their terminations with a rated voltage not exceeding 750 V—part 1: cable

    Google Scholar 

  31. Slovak Office of Standards, Metrology and Testing (2013) ISO 472:2013. Plastics: vocabulary

    Google Scholar 

  32. Karlsson B, Quintiere JG (1999) Enclosure fire dynamics. CRC Press, Boca Raton

    Book  Google Scholar 

  33. Purser DA (2016) Toxic combustion product yields as a function of equivalence ratio and flame retardants in under-ventilated fires: bench-large-scale comparisons. Polymers 8:330. https://doi.org/10.3390/polym8090330

    Article  Google Scholar 

  34. Martinka J, Kačíková D, Hroncová E, Ladomerský J (2012) Experimental determination of the effect of temperature and oxygen concentration on the production of birch wood main fire emissions. J Therm Anal Calorim 110(1):193–198. https://doi.org/10.1007/s10973-012-2261-2

  35. Martinka J, Rantuch P, Sulová J, Martinka F (2019) Assessing the fire risk of electrical cables using a cone calorimeter. J Therm Anal Calorim 135(6):3069–3083. https://doi.org/10.1007/s10973-018-7556-5

  36. Martinka J (2018) Toxicity of combustion products. In: Martinka J (ed) Fire risk of materials and combustible liquids, 1st edn. Vydavatelstvi a Nakladatelstvi Ales Cenek, Plzen, pp. 65–100

    Google Scholar 

  37. Xie R, Weisen AR, Lee Y, Aplan MA, Fenton AM, Masucci AE, Kempe F, Sommer M, Pester CW, Colby RH, Gomez ED (2020) Glass transition temperature from the chemical structure of conjugated polymers. Nat Commun 11:893. https://doi.org/10.1038/s41467-020-14656-8

    Article  Google Scholar 

  38. Chen I, Hwang SK, Chen S (1989) Chemical kinetics and reaction mechanism of thermal decomposition of aluminum hydroxide and magnesium hydroxide at high temperature (973–1123 K). Ind Eng Chem Res 28:738–742

    Article  Google Scholar 

  39. Martens R, Gentsch H, Freund F (1976) Hydrogen release during the thermal decomposition of magnesium hydroxide to magnesium oxide. J Catal 44:366–372

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Martinka .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martinka, J. (2022). Description and the Parameters of Electrical Cables. In: Fire Hazards of Electrical Cables. SpringerBriefs in Fire. Springer, Cham. https://doi.org/10.1007/978-3-031-17050-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17050-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17049-2

  • Online ISBN: 978-3-031-17050-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics