Skip to main content

CTooth+: A Large-Scale Dental Cone Beam Computed Tomography Dataset and Benchmark for Tooth Volume Segmentation

  • Conference paper
  • First Online:
Data Augmentation, Labelling, and Imperfections (DALI 2022)

Abstract

Accurate tooth volume segmentation is a prerequisite for computer-aided dental analysis. Deep learning-based tooth segmentation methods have achieved satisfying performances but require a large quantity of tooth data with ground truth. The dental data publicly available is limited meaning the existing methods can not be reproduced, evaluated and applied in clinical practice. In this paper, we establish a 3D dental CBCT dataset CTooth+, with 22 fully annotated volumes and 146 unlabeled volumes. We further evaluate several state-of-the-art tooth volume segmentation strategies based on fully-supervised learning, semi-supervised learning and active learning, and define the performance principles. This work provides a new benchmark for the tooth volume segmentation task, and the experiment can serve as the baseline for future AI-based dental imaging research and clinical application development. The codebase and dataset are released here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A,P.: Teeth dataset (2020). https://www.kaggle.com/pushkar34/teeth-dataset

  2. Ajaz, A., Kathirvelu, D.: Dental biometrics: computer aided human identification system using the dental panoramic radiographs. In: 2013 International Conference on Communication and Signal Processing, pp. 717–721. IEEE (2013)

    Google Scholar 

  3. Alsmadi, M.K.: A hybrid fuzzy c-means and neutrosophic for jaw lesions segmentation. Ain Shams Eng. J. 9(4), 697–706 (2018)

    Article  Google Scholar 

  4. Bui, T.D., Shin, J., Moon, T.: 3D densely convolutional networks for volumetric segmentation. arXiv preprint arXiv:1709.03199 (2017)

  5. Chen, X., Yuan, Y., Zeng, G., Wang, J.: Semi-supervised semantic segmentation with cross pseudo supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2613–2622 (2021)

    Google Scholar 

  6. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  7. Cui, W., et al.: CTooth: a fully annotated 3d dataset and benchmark for tooth volume segmentation on cone beam computed tomography images, June 2022. arXiv e-prints arXiv:2206.08778

  8. Cui, Z., Li, C., Wang, W.: Toothnet: automatic tooth instance segmentation and identification from cone beam CT images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6368–6377 (2019)

    Google Scholar 

  9. Guan, S., Khan, A.A., Sikdar, S., Chitnis, P.V.: Fully dense UNet for 2-d sparse photoacoustic tomography artifact removal. IEEE J. Biomed. Health Inform. 24(2), 568–576 (2019)

    Article  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  11. Hwa, R.: Sample selection for statistical parsing. Comput. Linguist. 30(3), 253–276 (2004)

    Article  MathSciNet  Google Scholar 

  12. Isensee, F., et al.: nnU-Net: self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:1809.10486 (2018)

  13. Joshi, A.J., Porikli, F., Papanikolopoulos, N.: Multi-class active learning for image classification. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2372–2379. IEEE (2009)

    Google Scholar 

  14. Li, Y., et al.: AGMB-transformer: Anatomy-guided multi-branch transformer network for automated evaluation of root canal therapy. IEEE J. Biomed. Health Inform. 26(4), 1684–1695 (2021)

    Google Scholar 

  15. Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. arXiv preprint arXiv:2112.04894 (2021)

  16. Lurie, A., Tosoni, G.M., Tsimikas, J., Walker, F., Jr.: Recursive hierarchic segmentation analysis of bone mineral density changes on digital panoramic images. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 113(4), 549–558 (2012)

    Article  Google Scholar 

  17. Manovich, L.: Inside photoshop. Computational Culture (1) (2011)

    Google Scholar 

  18. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  19. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  20. Qiao, S., Shen, W., Zhang, Z., Wang, B., Yuille, A.: Deep co-training for semi-supervised image recognition. In: Proceedings of the European Conference on Computer Vision (eccv), pp. 135–152 (2018)

    Google Scholar 

  21. Silva, G., Oliveira, L., Pithon, M.: Automatic segmenting teeth in x-ray images: trends, a novel data set, benchmarking and future perspectives. Expert Syst. Appl. 107, 15–31 (2018)

    Article  Google Scholar 

  22. Tarvainen, A., Valpola, H.: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  23. Wang, C.W., et al.: A benchmark for comparison of dental radiography analysis algorithms. Med. Image Anal. 31, 63–76 (2016)

    Article  Google Scholar 

  24. Wang, K., Zhang, D., Li, Y., Zhang, R., Lin, L.: Cost-effective active learning for deep image classification. IEEE Trans. Circuits Syst. Video Technol. 27(12), 2591–2600 (2016)

    Article  Google Scholar 

  25. Yang, S., et al.: A deep learning-based method for tooth segmentation on CBCT images affected by metal artifacts. In: 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2021)

    Google Scholar 

  26. Yu, L., et al.: Automatic 3D cardiovascular MR segmentation with densely-connected volumetric ConvNets. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 287–295. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_33

    Chapter  Google Scholar 

  27. Yushkevich, P.A., et al.: User-guided 3d active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006)

    Article  Google Scholar 

  28. Zhang, Z., Sabuncu, M.: Generalized cross entropy loss for training deep neural networks with noisy labels. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

Download references

Acknowledgement

The work was supported by the the Natural Science Foundation of China under Grant No. 62002316.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaqi Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, W. et al. (2022). CTooth+: A Large-Scale Dental Cone Beam Computed Tomography Dataset and Benchmark for Tooth Volume Segmentation. In: Nguyen, H.V., Huang, S.X., Xue, Y. (eds) Data Augmentation, Labelling, and Imperfections. DALI 2022. Lecture Notes in Computer Science, vol 13567. Springer, Cham. https://doi.org/10.1007/978-3-031-17027-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17027-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17026-3

  • Online ISBN: 978-3-031-17027-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics