Skip to main content

Unidirectional Motion of Single Molecules at Surfaces

  • Conference paper
  • First Online:
Single Molecule Mechanics on a Surface

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

  • 599 Accesses

Abstract

It is a basic concept of physical chemistry that in thermal equilibrium every individual process is compensated by its reverse process, which is called microscopic reversibility. It is therefore a challenge to realize unidirectional motion of atoms and molecules. Here, various examples of unidirectional motion at surfaces are presented, which cover both rotation and translation of single molecules. Two ways to achieve unidirectionality are discussed. First, the presence of a local gradient that deforms the potential energy surface and leads to unidirectionality. This can be caused by the tip of a scanning tunneling microscope, which is also a very suitable instrument to follow the motion of individual molecules. Second, intrinsic unidirectionality of a molecule-surface system, which is of particular interest to be employed in molecular machines for useful work at the atomic scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stroscio, J.A., Eigler, D.M.: Atomic and molecular manipulation with the scanning tunneling microscope. Science 254, 1319 (1991)

    Article  CAS  Google Scholar 

  2. Baber, A.E., Tierney, H.L., Sykes, E.C.H.: A quantitative single-molecule study of thioether molecular rotors. ACS Nano 2, 2385–2391 (2008)

    Article  CAS  Google Scholar 

  3. Gimzewski, J.K., Joachim, C., Schlittler, R.R., Langlais, V., Tang, H., Johannsen, I.: Rotation of a single molecule within a supramolecular bearing. Science 281, 531–533 (1998)

    Article  CAS  Google Scholar 

  4. Soe, W.-H., Srivastava, S., Joachim, C.: Train of single molecule-gears. J. Phys. Chem. Lett. 10, 6462–6467 (2019)

    Article  CAS  Google Scholar 

  5. Soe, W.-H., Kleinwächter, M., Kammerer, C., Rapenne, G., Joachim, C.: Mechanics of molecule-gears with six long teeth. J. Phys. Chem. C 124, 22625–22630 (2020)

    Article  CAS  Google Scholar 

  6. Yeung, K.H.A., Kühne, T., Eisenhut, F., Kleinwächter, M., Gisbert, Y., Robles, R., Lorente, N., Cuniberti, G., Joachim, C., Rapenne, G., Kammerer, C., Moresco, F.: Transmitting stepwise rotation among three molecule-gear on the Au(111) surface. J. Phys. Chem. Lett. 11, 6892–6899 (2020)

    Article  Google Scholar 

  7. Lin, H.-H., Croy, A., Gutierrez, R., Joachim, C., Cuniberti, G.: Mechanical transmission of rotational motion between molecular-scale gears. Phys. Rev. Appl. 13, 034024 (2020)

    Article  CAS  Google Scholar 

  8. Koumura, N., Zijistra, R.W.J., Delden, R.A.V., Harada, N., Feringa, B.L.: Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999)

    Google Scholar 

  9. Delden, R.A.V., Wiel, M.K.J.T., Pollard, M.M., Vicario, J., N. Koumura, B.L. Feringa, Unidirectional molecular motor on a gold surface. Nature 437, 1337–1340 (2005)

    Google Scholar 

  10. Ruangsupapichat, N., Pollard, M.M., Harutyunyan, S.R., Feringa, B.L.: Reversing the direction in a light-driven rotary molecular motor. Nat. Chem. 3, 53–60 (2011)

    Article  CAS  Google Scholar 

  11. Hernandez, J.V., Kay, E.R., Leigh, D.: A reversible synthetic rotary molecular motor. Science 306, 1532–1537 (2004)

    Article  CAS  Google Scholar 

  12. Erbas-Cakmak, S., Fielden, S.D.P., Karaca, U., Leigh, D.A., McTernan, C.T., Tetlow, D.J., Wilson, M.R.: Rotary and linear molecular motorsdriven by pulses of a chemical fuel. Science 358, 340–343 (2017)

    Article  CAS  Google Scholar 

  13. Stipe, B.C., Rezaei, M.A., Ho, W.: Inducing and viewing the rotational motion of a single molecule. Science 279, 1907 (1998)

    Article  CAS  Google Scholar 

  14. Ohmann, R., Meyer, J., Nickel, A., Echeverria, J., Grisolia, M., Joachim, C., Moresco, F., Cuniberti, G.: Supramolecular rotor and translator at work: on-surface movement of single atoms. ACS Nano 9, 8394–8400 (2015)

    Article  CAS  Google Scholar 

  15. Shchadilova, Y.E., Tikhodeev, S.G., Paulsson, M., Ueba, H.: Rotation of a single acetylene molecule on Cu(001) by tunneling electrons in STM. Phys. Rev. Lett. 111, 186102 (2013)

    Article  Google Scholar 

  16. Eisenhut, F., Meyer, J., Krüger, J., Ohmann, R., Cuniberti, G., Moresco, F.: Inducing the controlled rotation of single o-MeO-DMBI molecules anchored on Au(111). Surf. Sci. 678, 177–182 (2018)

    Article  CAS  Google Scholar 

  17. Perera, U.G.E., Ample, F., Kersell, H., Zhang, Y., Vives, G., Echeverria, J., Grisolia, M., Rapenne, G., Joachim, C., Hla, S.-W.: Controlled clockwise and anticlockwise rotation switching of a molecular motor. Nat. Nanotech. 8, 46–51 (2013)

    Article  CAS  Google Scholar 

  18. Teillet-Billy, D., Gauyacq, J.P., Persson, M.: Molecular rotation induced by inelastic electron tunneling. Phys. Rev. B 62, 13306-13309(R) (2000)

    Article  Google Scholar 

  19. Kuhne, D., Klappenberger, F., Krenner, W., Klyatskaya, S., Ruben, M., Barth, J.V.: Rotational and constitutional dynamics of caged supramolecules. Proc. Natl. Acad. Sci. U.S.A. 107, 21332–21336 (2010)

    Article  Google Scholar 

  20. Tierney, H.L., Murphy, C.J., Jewell, A.D., Baber, A.E., Iski, E.V., Khodaverdian, H.Y., McGuire, A.F., Klebanov, N., Sykes, E.C.H.: Experimental demonstration of a single-molecule electric motor. Nat. Nanotech. 6, 625–629 (2011)

    Article  CAS  Google Scholar 

  21. Tierney, H.L., Murphy, C.J., Sykes, E.C.H.: Regular scanning tunneling microscope tips can be intrinsically chiral. Phys. Rev. Lett. 106, 010801 (2011)

    Article  Google Scholar 

  22. Astumian, R.D.: Thermodynamics and kinetics of a Brownian motor. Science 276, 917–922 (1997)

    Article  CAS  Google Scholar 

  23. Reimann, P., Hänggi, P.: Introduction to the physics of Brownian motors. Appl. Phys. A 75, 169–178 (2002)

    Article  CAS  Google Scholar 

  24. Jewell, A.D., Tierney, H.L., Baber, A.E., Iski, E.V., Laha, M.M., Sykes, E.C.H.: Time-resolved studies of individual molecular rotors. J. Phys. Condens. Matter 22, 264006 (2010)

    Google Scholar 

  25. Simpson, G.J., García-López, V., Boese, A.D., Tour, J.M., Grill, L.: How to control single-molecule rotation. Nature Comm. 10, 4631 (2019)

    Article  Google Scholar 

  26. Simpson, G.J., Garcia-Lopez, V., Petermeier, P., Grill, L., Tour, J.M.: How to build and race a fast nanocar. Nat. Nanotech. 12, 604–606 (2017)

    Article  CAS  Google Scholar 

  27. Barth, J.V., Costantini, G., Kern, K.: Engineering atomic and molecular nanostructures at surfaces. Nature 437, 671–679 (2005)

    Article  CAS  Google Scholar 

  28. Ertl, G.: Reactions at Surfaces: From Atoms to complexity (nobel lecture). Angew. Chem. Int. Ed. 47, 3524–3535 (2008)

    Article  CAS  Google Scholar 

  29. Henß, A.-K., Sakong, S., Messer, P.K., Wiechers, J., Schuster, R., Lamb, D.C., Groß, A., Wintterlin, J.: Density fluctuations as door-opener for diffusion on crowded surfaces. Science 363, 715–718 (2019)

    Article  Google Scholar 

  30. Grill, L., Hecht, S.: Covalent on-surface polymerization. Nat. Chem. 12, 115–130 (2020)

    Article  CAS  Google Scholar 

  31. Witte, G., Wöll, C.: Growth of aromatic molecules on solid substrates for applications in organic electronics. J. Mater. Res. 19, 1889 (2004)

    Article  CAS  Google Scholar 

  32. Patera, L.L., Bianchini, F., Africh, C., Dri, C., Soldano, G., Mariscal, M.M., Peressi, M., Comelli, G.: Real-time imaging of adatom-promoted graphene growth on nickel. Science 359, 1243–1246 (2018)

    Article  CAS  Google Scholar 

  33. Rotter, P., Lechner, B.A.J., Morherr, A., Chisnall, D.M., Ward, D.J., Jardine, A.P., Ellis, J., Ellison, W., Eckhardt, B., Witte, G.: Coupling between diffusion and orientation of pentacene molecules on an organic surface. Nat. Mater. 15, 397–400 (2016)

    Article  CAS  Google Scholar 

  34. Kwon, K.-Y., Wong, K.L., Pawin, G., Bartels, L., Stolbov, S., Rahman, T.S.: Unidirectional adsorbate motion on a high-symmetry surface: “walking” molecules can stay the course. Phys. Rev. Lett. 95, 166101 (2005)

    Article  Google Scholar 

  35. Miwa, J.A., Weigelt, S., Gersen, H., Besenbacher, F., Rosei, F., Linderoth, T.R.: Azobenzene on Cu(110): adsorption site-dependent diffusion. J. Am. Chem. Soc. 128, 3164–3165 (2006)

    Article  CAS  Google Scholar 

  36. Barth, J.V.: Transport of adsorbates at metal surfaces: from thermal migration to hot precursors. Surf. Sci. Rep. 40, 75–149 (2000)

    Article  CAS  Google Scholar 

  37. Dobbs, K.D., Doren, D.J.: Dynamics of molecular surface diffusion: origins and consequences of long jumps. J. Chem. Phys. 97, 3722–3735 (1992)

    Article  CAS  Google Scholar 

  38. Schunack, M., Linderoth, T.R., Rosei, F., Laegsgaard, E., Stensgaard, I., Besenbacher, F.: Long jumps in the surface diffusion of large molecules. Phys. Rev. Lett. 88, 156102 (2002)

    Article  CAS  Google Scholar 

  39. Bartels, L., Wang, F., Möller, D., Knoesel, E., Heinz, T.F.: Real-space observation of molecular motion induced by femtosecond laser pulses. Science 305, 648–651 (2004)

    Article  CAS  Google Scholar 

  40. Mehlhorn, M., Gawronski, H., Morgenstern, K.: Diffusion and dimer formation of CO molecules induced by femtosecond laser pulses. Phys. Rev. Lett. 104, 076101 (2010)

    Article  Google Scholar 

  41. Alemani, M., Gross, L., Moresco, F., Rieder, K.-H., Wang, C., Bouju, X., Gourdon, A., Joachim, C.: Recording the intramolecular deformation of a 4-legs molecule during its STM manipulation on a Cu(211) surface. Chem. Phys. Lett. 402, 180 (2005)

    Google Scholar 

  42. Civita, D., Kolmer, M., Simpson, G.J., Li, A.-P., Hecht, S., Grill, L.: Control of long-distance motion of single molecules on a surface. Science 370, 957–960 (2020)

    Article  CAS  Google Scholar 

  43. Meyer, G., Repp, J., Zöphel, S., Braun, K.-F., Hla, S.W., Fölsch, S., Bartels, L., Moresco, F., Rieder, K.-H.: Controlled manipulation of atoms and small molecules with a low temperature scanning tunneling microscope. Single Mol 1, 79 (2000)

    Article  CAS  Google Scholar 

  44. Moresco, F.: Manipulation of large molecules by Low-Temperature STM: model systems for molecular electronics. Phys. Rep. 399, 175 (2004)

    Article  CAS  Google Scholar 

  45. Grill, L.: Imaging and manipulation of single molecules by scanning tunneling microscopy. In: Mikhailov, A.S., Ertl, G. (eds.) Engineering of chemical complexity, pp. 27–49. World Scientific Publishing Co., (2013)

    Google Scholar 

  46. Morgenstern, K., Lorente, N., Rieder, K.-H.: Controlled manipulation of single atoms and small molecules using the scanning tunnelling microscope. Phys. Status Solidi B 250, 1671–1751 (2013)

    Article  CAS  Google Scholar 

  47. Bartels, L., Meyer, G., Rieder, K.-H.: Basic steps of lateral manipulation of single atoms and diatomic clusters with a scanning tunnelling microscope tip. Phys. Rev. Lett. 79, 697 (1997)

    Article  CAS  Google Scholar 

  48. Grill L.: Functionalized molecules studied by STM: motion, switching and reactivity. J. Phys. Condens. Matter 20, 053001 (2008)

    Google Scholar 

  49. Rapenne, G., Joachim, C.: The first nanocar race. Nat. Rev. Mat. 2, 17040 (2017)

    Article  Google Scholar 

  50. Gross, L., Rieder, K.-H., Moresco, F., Stojkovic, S.M., Gourdon, A., Joachim, C.: Trapping and moving metal atoms with a six-leg molecule. Nature Mater. 4, 892–895 (2005)

    Article  CAS  Google Scholar 

  51. Grill, L., Rieder, K.-H., Moresco, F., Rapenne, G., Stojkovic, S., Bouju, X., Joachim, C.: Rolling a single molecular wheel at the atomic scale. Nat. Nanotech. 2, 95–98 (2007)

    Article  CAS  Google Scholar 

  52. Haq, S., Wit, B., Sang, H., Floris, A., Wang, Y., Wang, J., Perez-Garcia, L., Kantorovitch, L., Amabilino, D.B., Raval, R.: A small molecule walks along a surface between porphyrin fences that are assembled in situ. Angew. Chem. Int. Ed. 54, 7101–7105 (2015)

    Article  CAS  Google Scholar 

  53. Wong, K.L., Pawin, G., Kwon, K.-Y., Lin, X., Jiao, T., Solanki, U., Fawcett, R.H.J., Bartels, L., Stolbov, S., Rahman, T.S.: A molecule carrier. Science 315, 1391–1393 (2007)

    Article  CAS  Google Scholar 

  54. Chiaravalloti, F., Gross, L., Rieder, K.-H., Stojkovic, S.M., Gourdon, A., Joachim, C., Moresco, F.: A rack-and-pinion device at the molecular scale. Nat. Mater. 6, 30–33 (2007)

    Article  CAS  Google Scholar 

  55. Beton, P.H., Dunn, A.W., Moriarty, P.: Manipulation of C60 molecules on a Si surface. Appl. Phys. Lett. 67, 1075 (1995)

    Article  CAS  Google Scholar 

  56. Jung, T.A., Schlittler, R.R., Gimzewski, J.K., Tang, H., Joachim, C.: Controlled room-temperature positioning of individual molecules: molecular flexure and motion. Science 217, 181 (1996)

    Article  Google Scholar 

  57. Hla, S.-W., Braun, K.-F., Wassermann, B., Rieder, K.-H.: Controlled low-temperature molecular manipulation of sexiphenyl molecules on Ag(111) using scanning tunneling microscopy. Phys. Rev. Lett. 93, 208302 (2004)

    Article  Google Scholar 

  58. Anggara, K., Leung, L., Timm, M.J., Hu, Z., Polanyi, J.C.: Approaching the forbidden fruit of reaction dynamics: Aiming reagent at selected impact parameters, Sci. Adv. 4, eaau2821 (2018)

    Google Scholar 

  59. Anggara, K., Leung, L., Timm, M.J., Hu, Z., Polanyi, J.C.: Electron-induced molecular dissociation at a surface leads to reactive collisions at selected impact parameters. Faraday Discuss. 214, 89–103 (2019)

    Article  CAS  Google Scholar 

  60. Lewis, G.N.: A new principle of equilibrium. Proc. Nat. Acad. Sci. 11, 179–183 (1925)

    Article  CAS  Google Scholar 

  61. Tolman, R.C.: The principle of microscopic reversibility. Proc. Nat. Acad. Sci. 11, 436–439 (1925)

    Article  CAS  Google Scholar 

  62. Astumian, R.D., Hänggi, P.: Brownian motors. Phys. Today 55, 33–39 (2002)

    Article  Google Scholar 

  63. Onsager, L.: Reciprocal relations in irreversible processes I. Phys. Rev. 37, 405–426 (1931)

    Article  CAS  Google Scholar 

  64. Astumian, R.D.: Microscopic reversibility as the organizing principle of molecular machines. Nat. Nanotech. 7, 684–688 (2012)

    Article  CAS  Google Scholar 

  65. Astumian, R.D.: Protein conformational fluctuations and free-energy transduction. Appl. Phys. A 75, 193–206 (2002)

    Article  CAS  Google Scholar 

  66. Rousselet, J., Salome, L., Ajdari, A., Prost, J.: Directional motion of brownian particles induced by a periodic asymmetric potential. Nature 370, 446–448 (1994)

    Article  CAS  Google Scholar 

  67. Oudenaarden, A.V., Boxer, S.G.: Brownian ratchets: Molecular separations in lipid bilayers supported on patterned arrays. Science 285, 1046–1048 (1999)

    Google Scholar 

  68. Kelly, T.R., Sestelo, J.P., Tellitu, I.: New molecular devices: in search of a molecular ratchet. J. Org. Chem. 63, 3655–3665 (1998)

    Article  CAS  Google Scholar 

  69. Pawin, G., Wong, K.L., Kwon, K.-Y., Frisbee, R.J., Rahman, T.S., Bartels, L.: Surface diffusive motion in a periodic and asymmetric potential. J. Am. Chem. Soc. 130, 15244–15245 (2008)

    Article  CAS  Google Scholar 

  70. Zhang, Y., Calupitan, J.P., Rojas, T., Tumbleson, R., Erbland, G., Kammerer, C., Ajayi, T.M., Wang, S., Curtiss, L.A., Ngo, A.T., Ulloa, S.E., Rapenne, G., Hla, S.W.: A chiral molecular propeller designed for unidirectional rotations on a surface. Nature Comm. 10, 3742 (2019)

    Article  Google Scholar 

  71. Stolz, S., Gröning, O., Prinz, J., Brune, H., Widmer, R.: Molecular motor crossing the frontier of classical to quantum tunneling motion. PNAS 117, 14838–14842 (2020)

    Article  CAS  Google Scholar 

  72. Astumian, R.D., Mukherjee, S., Warshel, A.: The physics and physical chemistry of molecular machines. ChemPhysChem 17, 1719–1741 (2016)

    Article  CAS  Google Scholar 

  73. Hänggi, P., Marchesoni, F.: Artificial Brownian motors: controlling transport on the nanoscale. Rev. Mod. Phys. 81, 387–442 (2009)

    Article  Google Scholar 

  74. Timm, M., Leung, L., Anggara, K., Polanyi, J.C.: Direct observation of knock-on reaction with umbrella inversion arising from zero-impact-parameter collision at a surface. Commun. Chem. 4, 14 (2021)

    Article  CAS  Google Scholar 

  75. Astumian, R.D.: Design principles for Brownian molecular machines: how to swim in molasses and walk in a hurricane. Phys. Chem. Chem. Phys 9, 5067–5083 (2007)

    Article  CAS  Google Scholar 

  76. M.G.L.v.d. Heuvel, C. Dekker, Motor proteins at work for nanotechnology, Science, 317 (2007) 333–336.

    Google Scholar 

  77. Kodera, N., Yamamoto, D., Ishikawa, R., Ando, T.: Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468, 72–77 (2010)

    Article  CAS  Google Scholar 

  78. Browne, W.R., Feringa, B.L.: Making molecular machines work. Nat. Nanotech. 1, 25–35 (2006)

    Article  CAS  Google Scholar 

  79. Erbas-Cakmak, S., Leigh, D.A., McTernan, C.T., Nussbaumer, A.L.: Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015)

    Article  CAS  Google Scholar 

  80. Baroncini, M., Silvi, S., Credi, A.: Photo- and redox-driven artificial molecular motors. Chem. Rev. 120, 200–268 (2020)

    Article  CAS  Google Scholar 

  81. García-López, V., Liu, D., Tour, J.M.: Light-activated organic molecular motors and their applications. Chem. Rev. 120, 79–124 (2020)

    Article  Google Scholar 

  82. Badjic, J.D., Balzani, V., Credi, A., Silvi, S., Stoddart, J.F.: A molecular elevator. Science 303, 1845–1849 (2004)

    Article  CAS  Google Scholar 

  83. Liu, Y., Flood, A.H., Bonvallet, P.A., Vignon, S.A., Northrop, B.H., Tseng, H.-R., Jeppesen, J.O., Huang, T.J., Brough, B., Baller, M., Magonov, S., Solares, S.D., Goddard, W.A., Ho, C.-M., Stoddart, J.F.: Linear artificial molecular muscles. J. Am. Chem. Soc. 127, 9745–9759 (2005)

    Article  CAS  Google Scholar 

  84. Eelkema, R., Pollard, M.M., Vicario, J., Katsonis, N., Ramon, B.S., Bastiaansen, C.W.M., Broer, D.J., Feringa, B.L.: Nanomotor rotates microscale objects. Nature 440, 163 (2006)

    Article  CAS  Google Scholar 

  85. Balzani, V., Clemente-Leon, M., Credi, A., Ferrer, B., Venturi, M., Flood, A.H., Stoddart, J.F.: Autonomous artificial nanomotor powered by sunlight. Proc. Natl. Acad. Sci. 103, 1178–1183 (2006)

    Article  CAS  Google Scholar 

  86. Klok, M., Boyle, N., Pryce, M.T., Meetsma, A., Browne, W.R., Feringa, B.L.: MHz unidirectional rotation of molecular rotary motors. J. Am. Chem. Soc. 130, 10484–10485 (2008)

    Article  CAS  Google Scholar 

  87. Conyard, J., Addison, K., Heisler, I.A., Cnossen, A., Browne, W.R., Feringa, B.L., Meech, S.R.: Ultrafast dynamics in the power stroke of a molecular rotary motor. Nature Chem. 4, 547–551 (2012)

    Article  CAS  Google Scholar 

  88. Stacko, P., Kistemaker, J.C.M., Leeuwen, T.V., Chang, M.-C., Otten, E., Feringa, B.L.: Locked synchronous rotor motion in a molecular motor. Science 356, 964–968 (2017)

    Google Scholar 

  89. Kudernac, T., Ruangsupapichat, N., Parschau, M., Macia, B., Katsonis, N., Harutyunyan, S.R., Ernst, K.-H., Feringa, B.L.: Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208–211 (2011)

    Article  CAS  Google Scholar 

  90. Augulis R., Klok, M., Feringa, B.L., Loosdrecht, P.H.M.V.: Light-driven rotary molecular motors: an ultrafast optical study. Phys. Stat. Sol. 6(c), 181–184 (2009)

    Google Scholar 

  91. Chiang, P.-T., Mielke, J., Godoy, J., Guerrero, J.M., Alemany, L.B., Villagómez, C.J., Saywell, A., Grill, L., Tour, J.M.: Toward a light-driven motorized nanocar: synthesis and initial imaging of single molecules. ACS Nano 6, 592–597 (2012)

    Article  CAS  Google Scholar 

  92. Saywell, A., Bakker, A., Mielke, J., Kumagai, T., Wolf, M., García-López, V., Chiang, P.-T., Tour, J.M., Grill, L.: Light-induced translation of motorized molecules on a surface. ACS Nano 10, 10945–10952 (2016)

    Article  CAS  Google Scholar 

  93. Jacobson, P., Prezzi, D., Liu, D., Schied, M., Tour, J.M., Corni, S., Calzolari, A., Molinari, E., Grill, L.: Adsorption and motion of single molecular motors on TiO2(110). J. Phys. Chem. C 124, 24776–24785 (2020)

    Article  CAS  Google Scholar 

  94. Schied, M., Prezzi, D., Liu, D., Jacobson, P., Corni, S., Tour, J.M., Grill, L.: Inverted conformation stability of a motor molecule on a metal surface. J. Phys. Chem. C 126, 9034–9040 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the European Commission via the MEMO project (FET open project no. 766864) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonhard Grill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Simpson, G.J., Grill, L. (2023). Unidirectional Motion of Single Molecules at Surfaces. In: Moresco, F., Joachim, C. (eds) Single Molecule Mechanics on a Surface. Advances in Atom and Single Molecule Machines. Springer, Cham. https://doi.org/10.1007/978-3-031-16930-4_1

Download citation

Publish with us

Policies and ethics