Skip to main content

The Long March of Corals

  • Chapter
  • First Online:
Corals and Reefs

Abstract

After providing a brief history of the emergence of Life on the early Earth and of the chemical evolution of the atmosphere and the early ocean, successively are discussed the ways in which were acquired the ability of biomineralisation by marine invertebrates, are described earliest calcifying organisms, cnidarians, corals (Tabulata, Rugosa) and scleractinian corals. Then, the issue of the photosymbiosis acquired by early corals and scleractinians is debated. Finally, a brief history of corals and reef building throughout the Phanerozoic is developed, from the Cambrian to the Pliocene times. Scleractinians probably appeared as soon as the Paleozoic in the form of archaic counterparts (Scleractiniamorpha). These corals did not play a prominent role as reef builders prior to the Upper Jurassic and reached their acme during the Neogene. Bioconstructions were successively built by other calcifying organisms, including calcimicrobes, sponges, non-scleractinian corals, algae, ectoprocts, and bivalves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi N, Ezaki Y, Liu J (2011) Early Ordovician shift in reef construction from microbial to metazoan reefs. Palaios 26:106–114

    Google Scholar 

  • Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of. Annu Rev Ecol Evol Syst 34:661–689

    Google Scholar 

  • Bambach RK, Knoll AH, Sepkoski JJ Jr (2002) Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proc Natl Acad Sci U S A 99:6854–6859

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barbeitos MS, Romano SL, Lasker HR (2010) Repeated loss of coloniality and symbiosis in scleractinian corals. Proc Natl Acad Sci U S A 107:11877–11882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barbeitos MS (2011) Molecules, Morphology, fossils and the origination and extinction dynamics of scleractinian corals. In: Stanley GD Jr (ed) Corals and reef crises, collapse and change, vol 17. The Paleontological Society Papers, pp 1–17

    Google Scholar 

  • Bosellini FR (2006) Biotic change and their control on Oligocene–Miocene reefs: a case study from the Apulia Platform (Southern Italy). Palaeogeogr Palaeoclimatol Palaeoecol 241:393–409

    Google Scholar 

  • Bourque PA (2013) Stromatactis. In: Middleton GV, Church MJ, Coniglio M, Hardie LA, Longstaffe FJ (eds) Encyclopedia of Sediments and Sedimentary Rocks, Encyclopedia of Earth Sciences Series. Springer, Dordrechtet, pp 687–688

    Google Scholar 

  • Bridge TCL, Baird AH, Pandolfi JM, McWilliam MJ, Zapalski MK (2022) Functional consequences of Paleozoic reef collapse. Sci Rep 12:1386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Budd AF (2000) Diversity and extinction in the Cenozoic history of Caribbean reefs. Coral Reefs 19:25–35

    Google Scholar 

  • Canfield DE, Poulton SW, Knoll AH, Narbonne GM, Ross G, Goldberg T, Strauss H (2008) Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science 321:949–952

    CAS  PubMed  Google Scholar 

  • Copper P (2002) Silurian and Devonian reefs: 80 million years of global greenhouse between two ice ages. In: Flügel E, Kiessling W, Golonka J (eds) Phanerozoic reef patterns. Society of Economic Paleontologists and Mineralogists, Tulsa, USA, pp 181–238

    Google Scholar 

  • Copper P (2011) 100 millions years of reef prosperity and collapse: Ordovician to Devonian interval. In: Stanley JD (ed) Corals and reef crises, collapse and change, vol 17. Paleontological Society Papers, pp 15–32

    Google Scholar 

  • Copper P, Jin J (2012) Early Silurian (Aeronian) East Point coral patches of Anticosti Island, Eastern Canada: first reef recovery from the Ordovician–Silurian mass extinction in eastern Laurentia. Geosciences 2:64–89

    Google Scholar 

  • Copper P, Edinger E (2009) Distribution geometry and palaeogeography of the Frasnian (Late Devonian) reef complexes of Banks Island, NWT, western arctic, Canada. In: Königshof P (ed) Devonian change: case studies in palaeogeography and palaeoecology, vol 314. The Geological Society, Special Publications, London, pp 109–124

    Google Scholar 

  • Copper P, Scotese CR (2003) Megareefs in Middle Devonian supergreenhouse climates. In: Chan MA, Archer AW (eds) Extreme depositional environments: mega end-members in geologic time, vol 370. Geological Society of America, Special Paper, Boulder, CO, pp 209–230

    Google Scholar 

  • Coulson KP, Brand LR (2016) Lithistid-sponge reef-building community construct laminated, Upper Cambrian (Furongian) ‘stromatolites’. Palaios 31:358–370

    Google Scholar 

  • Cui H, Kaufman AJ, Xiao S, Peek S, Cao H, Min X, Cai Y, Siegel Z, Liu XM, Peng Y, Schiffbauer JD, Martin J (2016) Environmental context for the terminal Ediacaran biomineralization of animals. Geobiology 14:344–363

    CAS  PubMed  Google Scholar 

  • Cuif J-P (2014) The Rugosa-Scleractinia gap re-examined through microstructural and biochemical evidence: a tribute to H.C. Wang. Palaeoworld 23:1–14

    Google Scholar 

  • Davies GR, Richards BC, Beauchamp B, Nassichuck WW (1989) Carboniferous and Permian reefs in Canada and adjacent areas. In: Geldsetzer HHJ, James NP, Tebbutt GE (eds) Reefs, Canada and adjacent areas, Canadian Society of Petroleum Geologists, Memoir, vol 13, pp 565–574

    Google Scholar 

  • Denayer J, Webb GE (2015) Cionodendron and related lithostrotionid genera from the Mississippian of eastern Australia: systematics, stratigraphy and evolution. Alcheringa: An Australasian Journal of Palaeontology 39:315–376

    Google Scholar 

  • Dong X-P, Vargas K, Cunningham JA, Zhang H, Liu T, Chen F, Liu J, Bengtson S, Donoghue PCJ (2016) Development biology of the early Cambrian cnidarian Olivooides. Palaeontology 59:387–407

    Google Scholar 

  • Donoghue PCJ, Cunningham JA, Dong X-P, Bengston S (2015) Embryology in deep time. In: Wanninger A (ed) Evolutionary developmental biology of invertebrates 1: Introduction, non-Bilateria, Acoelomorpha, Xenoturbellida, Chaetognatha. Springer, Vienna, pp 45–66

    Google Scholar 

  • Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88

    PubMed  PubMed Central  Google Scholar 

  • Edwards CT, Saltzman MR, Royer DL, Fike DA (2017) Oxygenation as a driver of the Great Ordovician Biodiversification Event. Nat Geosci 10:925–929

    CAS  Google Scholar 

  • Elmi S (1990) Stages in the evolution of Late Triassic and Jurassic carbonate platforms: the western margin of the Subalpine Basin (Ardèche, France). In: Tucker ME, Wilson JL, Crevello PD, Sarg JR, Read JF (eds) Carbonate platforms: facies, sequences and evolution. Blackwell, Oxford, pp 109–144

    Google Scholar 

  • Fautin DG, Romano SL, Oliver WA Jr (2000) Zoantharia. Tree of Life Web Project. http://tolweb.org/tolarchive/17643/200060309/Zoantharia.html

  • Fedorowski J (1981) Carboniferous corals: distribution and sequence. Acta Palaeontol Pol 26:87–160

    Google Scholar 

  • Finnegan S, Bergmann K, Eiler JM, Jones DS, Fike DA, Isenman I, Hugues NC, Tripati AK, Fischer WW (2011) The magnitude and duration of Late Ordovician-Early Silurian glaciation. Science 331:903–906

    CAS  PubMed  Google Scholar 

  • Flügel E (2002) Triassic reef patterns. In: Flügel E, Kiessling W, Golonka J (eds) Phanerozoic reef patterns. Society of Economic Paleontologists and Mineralogists, Tulsa, USA, pp 391–463

    Google Scholar 

  • Fontaine H, Sueethorn V (2007) Carboniferous corals from Pang Mapha District, Northwest Thailand. Nat Hist Bull Siam Soc 55:199–221

    Google Scholar 

  • Fortey R, Jackson J, Strugnell J (2003) Phylogenetic fuses and evolutionary ‘explosions’: conflicting evidence and critical tests. Systemat Assoc., Special Volume 12:443–477

    Google Scholar 

  • Frankowiak K, Kret S, Mazur M, Meibom A, Kitahara MV, Stolarski J (2016a) Fine-scale skeletal banding can distinguish symbiotic from asymbiotic species among modern and fossil scleractinian corals. PLoS One 11:e0147066

    PubMed  PubMed Central  Google Scholar 

  • Frankowiak K, Wang XT, Sigman DM, Gothmann AM, Kitahara MV, Mazur M, Meibom A, Stolarski J (2016b) Photosymbiosis and the expansion of shallow-water corals. Sci Adv 2:1601122

    Google Scholar 

  • Gandin A, Debrenne F (2010) Distribution of the archaeocyath–calcimicrobial bioconstructions on the Early Cambrian shelves. Palaeoworld 19:222–241

    Google Scholar 

  • Gao J, Copper P (1997) Growth rates of Middle Paleozoic corals and sponges: early Silurian of Eastern Canada. Proceedings of the 8th International Coral Reef Symposium, Balboa, Panama, vol 2. pp 1651–1656

    Google Scholar 

  • Gili E, Masse J-P, Skelton PW (1995) Rudists as gregarious sediment-dwellers, not reef-builders, in Cretaceous carbonate platforms. Palaeogeogr Paleoclimatol Paleoecol 118:245–267

    Google Scholar 

  • Gill GA, Santonio M, Lathuilière B (2004) The depth of pelagic deposits in the Tethyan Jurassic and the use of corals: an example from the Apennines. Sediment Geol 166:311–334

    Google Scholar 

  • Gonzalez PD, Tortello MF, Damborenea SE (2011) Early Cambrian archaeocyathan limestone blocks in low-grade meta-conglomerate from El Jagüelito Formation (Sierra Grande, Rio Negro, Argentina). Geol Acta 9:159–173

    Google Scholar 

  • Gretz M, Lathuilière B, Martini R (2015) A new coral with simplified morphology from the oldest known Hettangian (Early Jurassic) reef in southern France. Acta Palaeontol Pol 60:277–286

    Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189

    CAS  PubMed  Google Scholar 

  • Hallock P (1997) Reefs and reef limestones in Earth history. In: Birkeland C (ed) Life and death of coral reefs. Chapman & Hall, New-York, USA, pp 1–29

    Google Scholar 

  • Hallock P (2009) Evolution and function of coral reef ecosystems, Encyclopedia of Life Support Systems, Earth System History and Natural Variability, vol 4. Eolss Publishers, Oxford, pp 85–117

    Google Scholar 

  • Han J, Kubota S, Li G, Ou Q, Wang X, Yao X, Shu D, Li Y, Uesugi K, Hoshino M, Sasaki O, Kano H, Sato T, Komiya T (2016) Divergent evolution of medusozoan symmetric patterns: evidence from the microanatomy of Cambrian tetramerous cubozoans from South China. Gondwana Res 31:150–163

    Google Scholar 

  • Joachimski MM, Breisig MS, Buggisch W, Talent JA, Mawson R, Gereke M, Morrow JR, Day J, Weddige K (2009) Devonian climate and reef evolution: insights from oxygen isotopes in apatite. Earth Planet Sci Lett 284:599–609

    CAS  Google Scholar 

  • Johnson CC, Sanders D, Kauffman EG, Hay W (2002) Patterns and processes influencing upper Cretaceous reefs. In: Flügel E, Kiessling W, Golonka J (eds) Phanerozoic reef patterns. Society of Economic Paleontologists and Mineralogists, Tulsa, USA, pp 549–585

    Google Scholar 

  • Kazmierczak J, Ittekkot V, Degens ET (1985) Biocalcification through time: environmental challenge and cellular response. Paläontol Z 59:15–33

    Google Scholar 

  • Kempe S, Kazmierczak J (1994) The role of alkalinity in the evolution of ocean chemistry, organization of living systems, and biocalcification processes. Bulletin de l’Institut Océanographique., Monaco, numéro spécial 13:935–940

    Google Scholar 

  • Kiessling W (2002) Secular variations in the Phanerozoic reef ecosystem. In: Flügel E, Kiessling W, Golonka J (eds) Phanerozoic reef patterns. SEPM, Tulsa, pp 625–690

    Google Scholar 

  • Kiessling W (2009) Reef expansion during the Triassic: spread of photosymbiosis balancing climatic cooling. Palaeogeogr Palaeoclimatol Palaeoecol 290:11–19

    Google Scholar 

  • Kiessling W, Simpson C, Foote M (2010) Reefs as cradles of evolution and sources of biodiversity in the Phanerozoic. Science 327:196–198

    CAS  PubMed  Google Scholar 

  • Kitahara MV, Cairns SD, Stolarski J, Blair D, Miller DJ (2010) A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial Co1 sequence data. PLoS One 5:e11490

    PubMed  PubMed Central  Google Scholar 

  • Kitahara MV, Lin MF, Forêt S, Huttley G, Miller DJ, Chen CA (2014) The ‘naked coral’ hypothesis revisited – evidence for and against scleractinian monophyly. PLoS One 9:e94774

    PubMed  PubMed Central  Google Scholar 

  • Knoll AH (2003a) Life on a young planet: the first three billions years of evolution on Earth. Princeton University Press, Princeton. 304 pp

    Google Scholar 

  • Knoll AH (2003b) Biomineralization and evolutionary history. Rev Mineral Geochem 54:329–356

    CAS  Google Scholar 

  • James NP, Wood RA (2010) Reefs. In: James NP, Dalrymple RW (eds) Facies models, vol 4. Geological Association of Canada, St John’s, pp 421–447

    Google Scholar 

  • Kołodziej B, Salamon K, Morycowa E, Szulc J, Łabaj MA (2018) Platy corals from the Middle Triassic of Upper Silesia, Poland: implications for photosymbiosis in the first scleractinians. Palaeogeogr Palaeoclimatol Palaeoecol 490:533–545

    Google Scholar 

  • Kröger B, Desrochers A, Ernst A (2017) The reengineering of reef habitats during the Great Ordovician Biodiversification Event. Palaios 32:584–599

    Google Scholar 

  • LaJeunesse TC (2004) Species radiations of symbiotic dinoglagellates in the Atlantic and Indo-Pacific since the Miocene–Pliocene transition. Mol Biol Evol 22:570–581

    PubMed  Google Scholar 

  • LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SC (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28:2570–2580

    CAS  PubMed  Google Scholar 

  • Latouche L (1997) L’Archéen et les conditions de l’apparition de la vie. Géochronique 64:8–17

    Google Scholar 

  • Lee J-Y, Riding R (2018) Marine oxygenation, lithistid sponges, and the early history of skeletal reefs. Earth Sci Rev 181:98–121

    CAS  Google Scholar 

  • Leinfelder RR, Schmid DU, Nose M, Werner W (2002) Jurassic reef patterns. In: Flügel E, Kiessling W, Golonka J (eds) Phanerozoic reef patterns. Society of Economic Paleontologists and Mineralogists, Tulsa, USA, pp 465–520

    Google Scholar 

  • Li C, Jin C, Planavsky NJ, Algeo TJ, Cheng M, Yang X, Zhao Y, Xie S (2017) Coupled oceanic oxygenation and metazoan diversification during the early-middle Cambrian. Geology 45:743–746

    Google Scholar 

  • Li Q, Ernst A, Munnecke A, Yu S, Li Y (2018) Early Silurian (Telychian) bryozoan reefs in the epeiric sea of South China: are heterotrophic metazoans buildups promoted by internal waves? Sed Geol 376: 50–59

    Google Scholar 

  • Lin MF, Chou WH, Kitahara MV, Chen CL, Miller DJ, Forêt S (2016) Corallimorpharians are not ‘naked corals’: insights into relationships between Scleractinia and Corallimorpharia from phylogenomic analyses. PeerJ 4:e2463

    PubMed  PubMed Central  Google Scholar 

  • Liu P, Xiao S, Yin C, Zhou C, Gao L, Tang F (2008) Systematic description and phylogenetic affinity of tubular microfossils from the Ediacaran Doushantuo formation at Weng’an, South China. Palaeontology 51:339–366

    Google Scholar 

  • Mackenzie JA, Davies PJ (1993) Cenozoic evolution of carbonate platforms on the northeastern Australian margin. In: Mackenzie JA, Davies PJ, Palmer-Julson A et al (eds) Proceedings of the Ocean Drilling Program, Scientific Results, vol 133. Northeast Australian Margin, College Station, TX, pp 763–770

    Google Scholar 

  • Martin-Garin B, Lathuilière B, Geister J (2012) The shifting biogeography of reef corals during the Oxfordian (Late Jurassic). A climatic control? Palaeogeogr Palaeoclimatol Palaeoecol 365–366:136–153

    Google Scholar 

  • Masse J-P (1992) The Lower Creataceous mesogean benthic ecosystems: paleoecologic aspects and palaeogeographic implications. Palaeogeogr Palaeoclimatol Palaeoecol 91:331–345

    Google Scholar 

  • Masse J-P, Philip J (1981) Cretaceous coral-rudist buildups of France. In: Toomey DF (ed) European fossil reef models, vol 30. Society of Economic Paleontologists and Mineralogists, Special Publication, Tulsa, USA, pp 399–426

    Google Scholar 

  • McGhee GRJ (1996) The Late Devonian mass extinction. Columbia University Press, New York, USA, p 303

    Google Scholar 

  • Medina M, Collins AG, Takaoka TL, Kuehl JV, Boore JL (2006) Naked corals: skeleton loss in Scleractinia. Proc Natl Acad Sci U S A 103:9096–9100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montaggioni LF, Braithwaite C (2009) Quaternary coral reef systems: history, development processes and controlling factors. In: Chamley H (ed) Developments in Marine Geology, vol 5. Elsevier, Amsterdam, p 550

    Google Scholar 

  • Nakazawa T (2001) Carboniferous reef succession of the Panthalassan open-ocean setting: example from Omi Limestone, central Japan. Facies 44:25–23

    Google Scholar 

  • Nunes F, Fukami H, Vollmer SV, Norris RD, Knowlton N (2007) Re-evaluation of the systematics of the endemic corals of Brazil by molecular data. Coral Reefs 27:423–432

    Google Scholar 

  • Oliver WA Jr (1996) Origins and relationships of Paleozoic coral groups and the origin of the Scleractinia. In: Stanley GD Jr (ed) Paleobiology and biology of corals. The Paleontological Society, Columbus, OH

    Google Scholar 

  • Olivier N, Hantzpergue P, Gaillard C, Pittet B, Leinfelder RR, Schmid DU, Werner W (2003) Microbialite morphology, structure and growth: a model of the Upper Jurassic reefs of the Chay Peninsula (western France). Palaeogeogr Palaeoclimatol Palaeoecol 193:383–404

    Google Scholar 

  • Olivier N, Lathuilière B, Thiry-Bastien P (2005) Growth models of Bajocian coral-microbialite reefs of Chargey-lès-Port (eastern France): palaeoenvironmental interpretations. Facies 52:113–127

    Google Scholar 

  • Pacheco MLAF, Galante D, Rodrigues F, Leme JdM, Bidola P, Hagadorn W, Stockmar M, Herzen J, Rudnitzki ID, Pfeiffer F, Marques AC (2015) Insights into the skeletonization, lifestyle, and affinity of the unusual Ediacaran fossil Corumbella. PLoS One 10:e0114219

    PubMed  PubMed Central  Google Scholar 

  • Park E, Hwang DS, Lee J-S, Song J-N, Seo TK, Won YJ (2012) Estimation of divergence times in cnidarian evolution based on mitochondrial protein coding genes and the fossil record. Mol Phylogenet Evol 62:329–345

    PubMed  Google Scholar 

  • Peel JS (2017) A problematic cnidarian (Cambroctoconus; Octocorallia?) from the Cambrian (Series 2–3) of Laurentia. J Paleontol 91:871–882

    Google Scholar 

  • Pehr K, Love JD, Kuznetsov A, Podkovyrov V, Junium CK, Shumlyanskyy L, Sokur T, Bekker A (2018) Ediacara biotic flourished in oligotrophic and bacterially dominated marine environments across Baltica. Nat Commun 9:1807

    PubMed  PubMed Central  Google Scholar 

  • Penny AM, Wood RA, Zhuravlev AY, Curtis A, Bowyer F, Tostevin R (2016) Intraspecific variation in an Ediacaran skeletal metazoan: Namacalathus from the Nama Group, Namibia. Geobiology 15:81–93

    PubMed  Google Scholar 

  • Perrin C (2002) Tertiary: the emergence of modern reef ecosystems. In: Flügel E, Kiessling W, Golonka J (eds) Phanerozoic reef patterns. Society of Economic Paleontologists and Mineralogists, Tulsa, USA, pp 587–621

    Google Scholar 

  • Perrin C, Bosellini FR (2012) Paleobiogeography of scleractinian reef corals: changing patterns during the Oligo-Miocene climatic transition in the Mediterranean. Earth Sci Rev 111:1–24

    Google Scholar 

  • Perrin C, Plaziat JC, Rosen BR (1998) The Miocene coral reefs and reef corals of the SW Gulf of Suez and NW Red Sea: distribution, diversity and regional environmental controls. In: Purser BH, Bosence DWJ (eds) Sedimentation and tectonics of Rift Basins: Red Sea – Gulf of Aden. Chapman & Hall, London, pp 296–319

    Google Scholar 

  • Percival LME, Ruhl M, Hesselbo SP, Whiteside JH (2017) Mercury evidence for pulsed volcanism during the end-Triassic mass extinction. Earth Atmos Planet Sci 114:7929–7934

    CAS  Google Scholar 

  • Philip J (1998) Biostratigraphie et paléobiogéographie des rudistes : évolution des concepts et progrès récents. Bulletin de la Société Géologique de France 169:689–708

    Google Scholar 

  • Playford PE, Hocking RM, Cockbain AE (2009) Devonian reef complexes of the Canning Basin, Western Australia: a historical review. In: Playton TE, Kerans C, Weissenberger AW (eds) New advances in Devonian carbonates: outcrop analogs, reservoirs and stratigraphy. Geological Survey of Western Australia, Bulletin 107. 444 pp

    Google Scholar 

  • Pochon X, Montoya-Burgos JI, Stadelmann B, Pawlowski J (2006) Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. Mol Phylogenet Evol 38:20–30

    CAS  PubMed  Google Scholar 

  • Pomar L, Hallock P (2007) Changes in coral-reef structure through the Miocene in the Mediterranean province: adaptative versus environmental influence. Geology 35:899–902

    Google Scholar 

  • Pratt BR, Spincer BR, Wood RA, Zhuravlev, AY (2000) Ecology and evolution of Cambrian reefs. In: Zhuravlev AY, Riding R (eds). The ecology of the Cambrian radiation, perspectives in paleobiology and Earth history series, New York, Columbia Univ. Press, p. 254–274

    Google Scholar 

  • Quinton PC, Speir L, Miller J, Ethington R, Macleaod KG (2018) Extreme heat in the early Ordovicien. Palaios 33:353–360

    Google Scholar 

  • Ramstein G (2015) Voyage à travers les climats de la Terre. Odile Jacob, Paris. 352 pp

    Google Scholar 

  • Ries JB (2010) Review: Geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification. Biogeosciences 7:2795–2849

    CAS  Google Scholar 

  • Rodríguez-Martínez M (2011) Waulsortian mud mounds. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology. Springer, Berlin, pp 893–901

    Google Scholar 

  • Romano SL, Palumbi SR (1996) Evolution of scleractinian corals inferred from molecular systematics. Science 271:640–642

    CAS  Google Scholar 

  • Roniewicz E, Morycowa E (1989) Triassic scleractinia and the Triassic/Liassic Boundary. Mem Assoc Australasian Palaeontol 8:640–642

    Google Scholar 

  • Rosen BR (2002) Biodiversity: old and new relevance for paleontology. Geoscientist 12:4–9

    Google Scholar 

  • Rosen BR, Turnsek D (1989) Extinction patterns and biogeography of scleractinian corals across the Cretaceous–Tertiary boundary. Mem Assoc Australasian Palaeontol 8:355–370

    Google Scholar 

  • Rosen BR, Aillud GS, Bosellini FR, Clack NJ, Insalaco E, Valldeperas FX, Wilson MEJ (2000) Platy coral assemblages: 200 million years of functional stability in response to the limiting effects of light and turbidity. Proceedings of the 9th International Coral Reef Symposium, Bali, Indonesia, vol 1. pp 255–264

    Google Scholar 

  • Rowland SM, Shapiro RS (2002) Reef patterns and environmental influences in the Cambrian and earliest Ordovician. In: Flügel E, Kiessling W, Golonka J (eds) Phanerozoic reef patterns. Society of Economic Paleontologists and Mineralogists, Tulsa, USA, pp 95–128

    Google Scholar 

  • Róžkowska M (1980) On Upper Devonian habitats of rugose corals. Acta Palaeontol Pol 25:597–611

    Google Scholar 

  • Sano S, Skelton PW, Takei M, Matsuoka A (2007) Discovery of Late Jurassic rudists from the Torinosu-type limestone blocks in the Oriai Formation of the Imaidani Group in the Shirokawa area, Ehime Prefecture, Southwest Japan. J Geol Soc Jpn 11:500–503

    Google Scholar 

  • Santodomingo N, Renema W, Johnson KG (2016) Understanding the murky history of the Coral Triangle: miocene corals and reef habitats in East Kalimantan (Indonesia). Coral Reefs 35:765–781

    Google Scholar 

  • Scotese CR (2014a) Atlas of Cambrian and Early Ordovician Paleogeographic Maps (Mollweide Projection), Maps 81–88, vol 5. Paleomap Atlas for Arcgis. Paleomap Project, Evanston, IL

    Google Scholar 

  • Scotese CR (2014b) Atlas of Permo-Triassic Paleogeographic Maps (Mollweide Projection), Maps 43–52, vols 3 & 4. Paleomap Atlas for Arcgis. Paleomap Project, Evanston, IL

    Google Scholar 

  • Scotese CR (2014c) Atlas of Jurassic Paleogeographic Maps (Mollweide Projection), Maps 32–42, vol 3. Paleomap Atlas for Arcgis. Paleomap Project, Evanston, IL

    Google Scholar 

  • Scotese CR (2014d) Atlas of Late Cretaceous Paleogeographic Maps (Mollweide Projection), Maps 16–22, vol 2. Paleomap Atlas for Arcgis. Paleomap Project, Evanston, IL

    Google Scholar 

  • Scotese CR (2014e) Atlas of Paleogene Paleogeographic Maps (Mollweide Projection), Maps 8–15, vol 1. Paleomap Atlas for Arcgis. Paleomap Project, Evanston, IL

    Google Scholar 

  • Scotese CR (2014f) Atlas of Neogene Paleogeographic Maps (Mollweide Projection), Maps 1–7, vol 1. Paleomap Atlas for Arcgis. Paleomap Project, Evanston, IL

    Google Scholar 

  • Scott RW (1988) Evolution of late Jurassic and early Cretaceous reef biota. Palaios 3:184–193

    Google Scholar 

  • Scrutton CT (1997) The Paleozoic corals, I: Origins and relationships. Proc Yorks Geol Soc 51:177–208

    Google Scholar 

  • Scrutton CT (1999) Palaeozoic corals: their evolution and palaeoecology. Geol Today 193:184–193

    Google Scholar 

  • Servais T, Owen AW, Harper DAT, Kröger B, Munnecke A (2010) The Great Ordovician Biodiversification Event (GOBE): the palaeoecological dimension. Palaeogeogr Palaeoclimatol Palaeoecol 294:99–119

    Google Scholar 

  • Shaked Y, de Vargas C (2006) Pelagic photosymbiosis: rDNA assessment of diversity and evolution of dinoflagellate symbionts and planktonic foraminiferal hosts. Mar Ecol Prog Ser 325:59–71

    CAS  Google Scholar 

  • Shao L, Cui Y, Qiao P, Zhang D, Liu X, Zhang C (2017) Sea-level changes and carbonate platform evolution of the Xisha Islands (South China Sea) since the early Miocene. Palaeogeogr Palaeoclimatol Palaeoecol 485:504–516

    Google Scholar 

  • Skelton PW, Sano S, Masse JP (2013) Rudist bivalves and the Pacific in the late Jurassic and early Cretaceous. J Geol Soc Lond 170:513–526

    Google Scholar 

  • Sorauf JE, Pedder AEH (1986) Late Devonian rugose corals and the Frasnian–Famennian crisis. Can J Earth Sci 23:1265–1287

    Google Scholar 

  • Sorauf JE, Savarese M (1995) A lower Cambrian coral from South Australia. Palaeontology 38:757–770

    Google Scholar 

  • Stanley GD Jr, Swart PK (1995) Evolution of the coral-zooxanthellate symbiosis during the Triassic: a geochemical approach. Paleobiology 21:179–199

    Google Scholar 

  • Stanley GD Jr (2003) The evolution of modern corals and their early history. Earth Sci Rev 60:195–225

    Google Scholar 

  • Stanley GD Jr (2006) Photosymbiosis and the evolution of modern coral reefs. Science 312:857–858

    CAS  PubMed  Google Scholar 

  • Stanley GD Jr, Helme KP (2010) Middle Triassic coral growth bands and their implication for photosymbiosis. Palaios 25:754–763

    Google Scholar 

  • Stanley GD Jr, van de Schootbrugge B (2009) The evolution of the coral-algal symbiosis. In: van Oppen MHJ, Lough JM (eds) Coral bleaching: patterns, processes, causes and consequences. Springer, Berlin, pp 7–19

    Google Scholar 

  • Stanley SM (2008) Effects of global seawater chemistry on biomineralization: past, present, and future. Chem Rev 108:4483–4498

    CAS  PubMed  Google Scholar 

  • Stanley SM, Hardie LA (1999) Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr Palaeoclimatol Palaeoecol 144:3–19

    Google Scholar 

  • Stolarski J, Kitahara MV, Miller DJ, Cairns SD, Mazur M, Meibom A (2011) The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals. BioMed Central Evol Biol 11:316

    Google Scholar 

  • Swart PK (1983) Carbon and oxygen isotope fractionation in scleractinian corals: a review. Earth Sci Rev 19:51–80

    CAS  Google Scholar 

  • Tornabene C, Martindale RC, Wang XT, Schaller MF (2017) Detecting photosymbiosis in fossil scleractinian corals. Nat Sci Rep 7:9565

    Google Scholar 

  • Tostevin R, Wood RA, Shields GA, Poulton SW, Guilbaud R, Bowyer F, Penny AM, He T, Curtis A, Hoffmann KH, Clarkson MO (2016) Low-oxygen waters limited habitable space for early animals. Nat Commun 7:12818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trotter JA, Williams IS, Barnes CR, Lecuyer C, Nicoll RS (2008) Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science 321:550–554

    CAS  PubMed  Google Scholar 

  • van Iten H, Marques AC, Leme JM, Pacheco MALF, Simoes MG (2014) Origin and early diversification of the phylum Cnidaria Verrill: major developments in the analysis of the taxon’s Proterozoic-Cambrian history. Palaeontology 57:677–690

    Google Scholar 

  • van Iten H, Leme JM, Pacheco MLAF, Simoes MG, Fairchild TR, Rodrigues F, Marques AC (2016) Origin and early diversification of phylum Cnidaria: key macrofossils from the Ediacaran System of North and South America. In: Goffredo S, Dubinsky Z (eds) The Cnidaria, past, present and future. Springer International, Switzerland, pp 31–40

    Google Scholar 

  • Vermeij GJ (1987) Evolution and escalation: an ecological history of life. Princeton University Press, Princeton, NJ. 527 pp

    Google Scholar 

  • Veron JEN (1995) Corals in space and time: the biogeography and evolution of the Scleractinia. University of New South Wales Press, Sydney. 321 pp

    Google Scholar 

  • Wahlman GP (2002) Upper Carboniferous-Lower Permian (Bashkirian-Kungurian) mounds and reefs. In: Flügel E, Kiessling W, Golonka J (eds) Phanerozoic reef patterns. Society of Economic Paleontologists and Mineralogists, Tulsa, USA, pp 271–338

    Google Scholar 

  • Warren LV, Quaglio F, Simoes MG, Gaucher C, Riccomini C, Poiré DG, Freitas BT, Boggiani P, Sial AN (2017) Cloudina-Corumbella-Namacalathus association from the Itapucumi Group, Paraguay: increasing ecosystem complexity and tiering at the end of the Ediacaran. Precambrian Res 298:79–87

    CAS  Google Scholar 

  • Webby BD (2002) Patterns of Ordovician reef development. In: Flügel E, Kiessling W, Golonka J (eds) Phanerozoic reef patterns. Society of Economic Paleontologists and Mineralogists, Tulsa, USA, pp 129–179

    Google Scholar 

  • Weidlich O (2002) Permian reefs re-examined: extrinsic control mechanisms of gradual and abrupt changes during 40 my of reef evolution. Geobios Mémoire Spécial 24:287–294

    Google Scholar 

  • Wilson MEJ, Rosen BR (1998) Implications of paucity of corals in the Paleogene of SE Asia: plate tectonics or centre of origin? In: Hall R, Holloway JD (eds) Biogeography and geological evolution of SE Asia. Backhuys Publishers, Leiden, pp 165–195

    Google Scholar 

  • Wood RA (1999) Reef evolution. Oxford, Oxford University Press. 426 pp

    Google Scholar 

  • Wood RA (2011) Paleoecology of the earliest metazoan communities: implications for early biomineralization. Earth Sci Rev 106:184–190

    CAS  Google Scholar 

  • Wood RA (2017) Palaeoecology of Ediacaran metazoans reefs. In: Brasier AT, McIlroy D, McLoughlin N (eds) Earth system evolution and early life: a celebration of the work of Martin Brasier, vol 448. Geological Society of London, Special Publications

    Google Scholar 

  • Wood RA, Zhuravlev AY (2012) Escalation and ecological selectivity of mineralogy in the Cambrian Radiation of skeletons. Earth Sci Rev 115:249–261

    CAS  Google Scholar 

  • Wood RA, Curtis A (2014) Extensive metazoan reefs from the Ediacaran Nama Group, Namibia: the rise of benthic suspension feeding. Geobiology 13:112–122

    Google Scholar 

  • Wood RA, Poulton SW, Prave AR, Hoffmann K-H, Clarkson MO, Guilbaud R, Lyne JW, Tostevin R, Bowyer F, Penny AM, Curtis A, Kasemann SA (2015) Dynamic redox conditions control late Ediacarian metazoan ecosystems in the Nama Group, Namibia. Precambrian Res 261:252–271

    CAS  Google Scholar 

  • Wood RA, Ivantsov AY, Zhuravlev AY (2017) First macrobiota biomineralization was environmentally triggered. Proc R Soc Lond B 284:20170059

    Google Scholar 

  • Xiao S, Yuan X, Knoll AH (2000) Eumetazoan fossils in terminal Proterozoic phosphorites? Proc Natl Acad Sci U S A 97:13684–13689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao L, Wang X-D (2016) Distribution and evolution of Carboniferous reefs in south China. Palaeoworld 25:362–376

    Google Scholar 

  • Zapalski MK (2014) Evidence of photosymbiosis in Paleozoic tabulate corals. Proc R Soc Lond B 281:2032663

    Google Scholar 

  • Zapalski MK, Berkowski B (2019) The Silurian mesophotic coral ecosystems: 430 million years of photosymbiosis. Coral Reefs 38:137–147

    Google Scholar 

  • Zhang K, Zhu X, Wood RA, Shi Y, Gao Z, Poulton W (2018) Oxygenation of the Mesoproterozoic Ocean and the evolution of complex eukaryotes. Nat Geosci 11:345–351

    Google Scholar 

  • Zhuravlev AY, Wood RA (2008) Eve of biomineralization: controls on skeletal mineralogy. Geology 36: 923–926

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martin-Garin, B., Montaggioni, L.F. (2023). The Long March of Corals. In: Corals and Reefs . Coral Reefs of the World, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-031-16887-1_4

Download citation

Publish with us

Policies and ethics