Skip to main content

Sparse Visual Counterfactual Explanations in Image Space

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13485))

Included in the following conference series:

Abstract

Visual counterfactual explanations (VCEs) in image space are an important tool to understand decisions of image classifiers as they show under which changes of the image the decision of the classifier would change. Their generation in image space is challenging and requires robust models due to the problem of adversarial examples. Existing techniques to generate VCEs in image space suffer from spurious changes in the background. Our novel perturbation model for VCEs together with its efficient optimization via our novel Auto-Frank-Wolfe scheme yields sparse VCEs which lead to subtle changes specific for the target class. Moreover, we show that VCEs can be used to detect undesired behavior of ImageNet classifiers due to spurious features in the ImageNet dataset. Code is available under https://github.com/valentyn1boreiko/SVCEs_code.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Augustin, M., Meinke, A., Hein, M.: Adversarial robustness on in- and out-distribution improves explainability. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 228–245. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_14

    Chapter  Google Scholar 

  2. Avrahami, O., Lischinski, D., Fried, O.: Blended diffusion for text-driven editing of natural images (2021)

    Google Scholar 

  3. Bach, S., Binder, A., Gregoire Montavon, F.K., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)

    Article  Google Scholar 

  4. Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., Müller, K.R.: How to explain individual classification decisions. J. Mach. Learn. Res. (JMLR) 11, 1803–1831 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Barocas, S., Selbst, A.D., Raghavan, M.: The hidden assumptions behind counterfactual explanations and principal reasons. In: FACCT, pp. 80–89 (2020)

    Google Scholar 

  6. Beery, S., Van Horn, G., Perona, P.: Recognition in terra incognita. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 472–489. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_28

    Chapter  Google Scholar 

  7. Brendel, W., Bethge, M.: Approximating CNNs with bag-of-local-features models works surprisingly well on imageNet. In: ICLR (2019)

    Google Scholar 

  8. Carmon, Y., Raghunathan, A., Schmidt, L., Duchi, J.C., Liang, P.: Unlabeled data improves adversarial robustness. In: NeurIPS (2019)

    Google Scholar 

  9. Carter, S., Armstrong, Z., Schubert, L., Johnson, I., Olah, C.: Exploring neural networks with activation atlases. Distill (2019)

    Google Scholar 

  10. Chang, C.H., Creager, E., Goldenberg, A., Duvenaud, D.: Explaining image classifiers by counterfactual generation. In: ICLR (2019)

    Google Scholar 

  11. Chen, J., Yi, J., Gu, Q.: A Frank-Wolfe framework for efficient and effective adversarial attacks. In: AAAI (2019)

    Google Scholar 

  12. Commission, E.: Regulation for laying down harmonised rules on AI. European Commission (2021). https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52021PC0206 &from=EN

  13. Croce, F., et al.: Robustbench: a standardized adversarial robustness benchmark. In: NeurIPS Track on Benchmark and Datasets (2021)

    Google Scholar 

  14. Croce, F., Hein, M.: Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. In: ICML (2020)

    Google Scholar 

  15. Croce, F., Hein, M.: Mind the box: \(l_1\)-APGD for sparse adversarial attacks on image classifiers. In: ICML (2021)

    Google Scholar 

  16. Croce, F., Hein, M.: Adversarial robustness against multiple \(l_p\)-threat models at the price of one and how to quickly fine-tune robust models to another threat model. In: ICML (2022)

    Google Scholar 

  17. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. arXiv preprint arXiv:2105.05233 (2021)

  18. Dhurandhar, A., et al.: Explanations based on the missing: towards contrastive explanations with pertinent negatives. In: NeurIPS (2018)

    Google Scholar 

  19. Engstrom, L., Ilyas, A., Salman, H., Santurkar, S., Tsipras, D.: Robustness (python library) (2019). https://github.com/MadryLab/robustness

  20. Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Tran, B., Madry, A.: Adversarial robustness as a prior for learned representations (2019)

    Google Scholar 

  21. Etmann, C., Lunz, S., Maass, P., Schönlieb, C.B.: On the connection between adversarial robustness and saliency map interpretability. In: ICML (2019)

    Google Scholar 

  22. Gao, S., Li, Z.Y., Yang, M.H., Cheng, M.M., Han, J., Torr, P.: Large-scale unsupervised semantic segmentation. arXiv preprint arXiv:2106.03149 (2021)

  23. Goh, G., et al.: Multimodal neurons in artificial neural networks. Distill (2021)

    Google Scholar 

  24. Gowal, S., Qin, C., Uesato, J., Mann, T., Kohli, P.: Uncovering the limits of adversarial training against norm-bounded adversarial examples. arXiv preprint arXiv:2010.03593v2 (2020)

  25. Goyal, Y., Wu, Z., Ernst, J., Batra, D., Parikh, D., Lee, S.: Counterfactual visual explanations. In: ICML (2019)

    Google Scholar 

  26. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: ICML (2017)

    Google Scholar 

  27. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: ECCV (2016)

    Google Scholar 

  28. Hendricks, L.A., Akata, Z., Rohrbach, M., Donahue, J., Schiele, B., Darrell, T.: Generating visual explanations. In: ECCV (2016)

    Google Scholar 

  29. Hendricks, L.A., Hu, R., Darrell, T., Akata, Z.: Grounding visual explanations. In: ECCV (2018)

    Google Scholar 

  30. Hendrycks, D., Mu, N., Cubuk, E.D., Zoph, B., Gilmer, J., Lakshminarayanan, B.: AugMix: a simple data processing method to improve robustness and uncertainty. In: ICLR (2020)

    Google Scholar 

  31. Hendrycks, D., Zhao, K., Basart, S., Steinhardt, J., Song, D.: Natural adversarial examples. In: CVPR (2021)

    Google Scholar 

  32. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: NeurIPS (2017)

    Google Scholar 

  33. Hohman, F., Park, H., Robinson, C., Chau, D.H.: Summit: scaling deep learning interpretability by visualizing activation and attribution summarizations. IEEE Trans. Vis. Comput. Graph. (TVCG) 26(1), 1096–1106 (2020). https://doi.org/10.1109/tvcg.2019.2934659

  34. Jaggi, M.: Revisiting Frank-Wolfe: projection-free sparse convex optimization. In: ICML (2013)

    Google Scholar 

  35. Kolesnikov, A., et al.: Big transfer (bit): general visual representation learning. In: ECCV (2020)

    Google Scholar 

  36. Laidlaw, C., Singla, S., Feizi, S.: Perceptual adversarial robustness: defense against unseen threat models. In: ICLR (2021)

    Google Scholar 

  37. Lang, O., et al.: Explaining in style: training a GAN to explain a classifier in stylespace. arXiv preprint arXiv:2104.13369 (2021)

  38. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: NeurIPS (2017)

    Google Scholar 

  39. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: ICLR (2018)

    Google Scholar 

  40. Marcinkevičs, R., Vogt, J.E.: Interpretability and explainability: a machine learning zoo mini-tour. arXiv:2012.01805 (2020)

  41. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)

    Article  MathSciNet  Google Scholar 

  42. Moraru, V.: An algorithm for solving quadratic programming problems. Comput. Sci. J. Moldova 5(2), 14 (1997)

    Google Scholar 

  43. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers through diverse counterfactual explanations. In: FAccT (2020)

    Google Scholar 

  44. Nichol, A., et al.: Glide: towards photorealistic image generation and editing with text-guided diffusion models (2021)

    Google Scholar 

  45. Pawlowski, N., Coelho de Castro, D., Glocker, B.: Deep structural causal models for tractable counterfactual inference. In: NeurIPS (2020)

    Google Scholar 

  46. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML (2021)

    Google Scholar 

  47. Recht, B., Roelofs, R., Schmidt, L., Shankar, V.: Do CIFAR-10 classifiers generalize to CIFAR-10? arXiv preprint arXiv:1806.00451 (2018)

  48. Ribeiro, M.T., Singh, S., Guestrin, C.: "why should i trust you?": explaining the predictions of any classifier. In: KDD, pp. 1135–1144 (2016)

    Google Scholar 

  49. Samangouei, P., Saeedi, A., Nakagawa, L., Silberman, N.: ExplainGAN: model explanation via decision boundary crossing transformations. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 681–696. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_41

    Chapter  Google Scholar 

  50. Sanchez, P., Tsaftaris, S.A.: Diffusion causal models for counterfactual estimation. In: First Conference on Causal Learning and Reasoning (2022)

    Google Scholar 

  51. Santurkar, S., Tsipras, D., Tran, B., Ilyas, A., Engstrom, L., Madry, A.: Image synthesis with a single (robust) classifier. In: NeurIPS (2019)

    Google Scholar 

  52. Schut, L., et al.: Generating interpretable counterfactual explanations by implicit minimisation of epistemic and aleatoric uncertainties. In: AISTATS (2021)

    Google Scholar 

  53. Schutte, K., Moindrot, O., Hérent, P., Schiratti, J.B., Jégou, S.: Using styleGAN for visual interpretability of deep learning models on medical images. In: NeurIPS Workshop "Medical Imaging Meets NeurIPS" (2020)

    Google Scholar 

  54. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vision 128(2), 336–359 (2019)

    Article  Google Scholar 

  55. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. In: ICLR (2014)

    Google Scholar 

  56. Singla, S., Nushi, B., Shah, S., Kamar, E., Horvitz, E.: Understanding failures of deep networks via robust feature extraction. In: CVPR (2021)

    Google Scholar 

  57. Srinivas, S., Fleuret, F.: Full-gradient representation for neural network visualization. In: NeurIPS (2019)

    Google Scholar 

  58. Szegedy, C., et al.: Intriguing properties of neural networks. In: ICLR, pp. 2503–2511 (2014)

    Google Scholar 

  59. Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: a large data set for nonparametric object and scene recognition. IEEE PAMI 30(11), 1958–1970 (2008)

    Article  Google Scholar 

  60. Tsiligkaridis, T., Roberts, J.: Understanding frank-wolfe adversarial training. In: CVPR (2022)

    Google Scholar 

  61. Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., Madry, A.: Robustness may be at odds with accuracy. In: ICLR (2019)

    Google Scholar 

  62. Verma, S., Dickerson, J.P., Hines, K.: Counterfactual explanations for machine learning: a review. arXiv preprint, arXiv:2010.10596 (2020)

  63. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without opening the black box: automated decisions and the GDPR. Harvard J. Law Technol. 31, 841–887 (2018)

    Google Scholar 

  64. Wang, Z., Wang, H., Ramkumar, S., Fredrikson, M., Mardziel, P., Datta, A.: Smoothed geometry for robust attribution. In: NeurIPS (2020)

    Google Scholar 

  65. Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with noisy student improves imagenet classification. In: CVPR (2020)

    Google Scholar 

  66. Yu, Y., Zhang, X., Schuurmans, D.: Generalized conditional gradient for sparse estimation. J. Mach. Learn. Res. 18(144), 1–46 (2017)

    MathSciNet  MATH  Google Scholar 

  67. Zech, J.R., Badgeley, M.A., Liu, M., Costa, A.B., Titano, J.J., Oermann, E.K.: Confounding variables can degrade generalization performance of radiological deep learning models. arXiv preprint arXiv:1807.00431 (2018)

Download references

Acknowledgement

M.H., P.B., and V.B. acknowledge support by the the DFG Excellence Cluster Machine Learning - New Perspectives for Science, EXC 2064/1, Project number 390727645.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentyn Boreiko .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 45602 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boreiko, V., Augustin, M., Croce, F., Berens, P., Hein, M. (2022). Sparse Visual Counterfactual Explanations in Image Space. In: Andres, B., Bernard, F., Cremers, D., Frintrop, S., Goldlücke, B., Ihrke, I. (eds) Pattern Recognition. DAGM GCPR 2022. Lecture Notes in Computer Science, vol 13485. Springer, Cham. https://doi.org/10.1007/978-3-031-16788-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16788-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16787-4

  • Online ISBN: 978-3-031-16788-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics