Skip to main content

On Hyperbolic Embeddings in Object Detection

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2022)

Abstract

Object detection, for the most part, has been formulated in the euclidean space, where euclidean or spherical geodesic distances measure the similarity of an image region to an object class prototype. In this work, we study whether a hyperbolic geometry better matches the underlying structure of the object classification space. We incorporate a hyperbolic classifier in two-stage, keypoint-based, and transformer-based object detection architectures and evaluate them on large-scale, long-tailed, and zero-shot object detection benchmarks. In our extensive experimental evaluations, we observe categorical class hierarchies emerging in the structure of the classification space, resulting in lower classification errors and boosting the overall object detection performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Besic, B., Valada, A.: Dynamic object removal and spatio-temporal RGB-D inpainting via geometry-aware adversarial learning. IEEE Trans. Intell. Veh. 7(2), 170–185 (2022)

    Article  Google Scholar 

  2. Bolya, D., Foley, S., Hays, J., Hoffman, J.: TIDE: a general toolbox for identifying object detection errors. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 558–573. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_33

    Chapter  Google Scholar 

  3. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature, vol. 319. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-662-12494-9

    Book  MATH  Google Scholar 

  4. Caesar, H., Uijlings, J., Ferrari, V.: Coco-stuff: thing and stuff classes in context. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  5. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)

    Google Scholar 

  6. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  7. Dai, X., et al.: Dynamic head: unifying object detection heads with attentions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7373–7382 (2021)

    Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  9. Gosala, N., Valada, A.: Bird’s-eye-view panoptic segmentation using monocular frontal view images. arXiv preprint arXiv:2108.03227 (2021)

  10. Gupta, A., Dollar, P., Girshick, R.: LVIS: a dataset for large vocabulary instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5356–5364 (2019)

    Google Scholar 

  11. Hayat, N., Hayat, M., Rahman, S., Khan, S., Zamir, S.W., Khan, F.S.: Synthesizing the unseen for zero-shot object detection. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Hurtado, J.V., Mohan, R., Burgard, W., Valada, A.: MOPT: multi-object panoptic tracking. arXiv preprint arXiv:2004.08189 (2020)

  14. Khrulkov, V., Mirvakhabova, L., Ustinova, E., Oseledets, I., Lempitsky, V.: Hyperbolic image embeddings. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6418–6428 (2020)

    Google Scholar 

  15. Lang, C., Braun, A., Valada, A.: Contrastive object detection using knowledge graph embeddings. arXiv preprint arXiv:2112.11366 (2021)

  16. Law, H., Deng, J.: Cornernet: detecting objects as paired keypoints. In: European Conference on Computer Vision, pp. 734–750 (2018)

    Google Scholar 

  17. Lee, Y., Park, J.: Centermask: real-time anchor-free instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 13906–13915 (2020)

    Google Scholar 

  18. Leimeister, M., Wilson, B.J.: Skip-gram word embeddings in hyperbolic space. arXiv preprint arXiv:1809.01498 (2018)

  19. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2980–2988 (2017)

    Google Scholar 

  20. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  21. Liu, S., Chen, J., Pan, L., Ngo, C.W., Chua, T.S., Jiang, Y.G.: Hyperbolic visual embedding learning for zero-shot recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9273–9281 (2020)

    Google Scholar 

  22. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  23. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  24. Meng, Y., et al.: Spherical text embedding. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  25. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  26. Mohan, R., Valada, A.: Amodal panoptic segmentation. arXiv preprint arXiv:2202.11542 (2022)

  27. Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  28. Nickel, M., Kiela, D.: Learning continuous hierarchies in the lorentz model of hyperbolic geometry. In: International Conference on Machine Learning, pp. 3779–3788 (2018)

    Google Scholar 

  29. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Proceedings of the Conference on Neural Information Processing Systems, pp. 8024–8035 (2019)

    Google Scholar 

  30. Rahman, S., Khan, S., Barnes, N.: Improved visual-semantic alignment for zero-shot object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11932–11939 (2020)

    Google Scholar 

  31. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  32. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Proceedings of the Conference on Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  33. Sirohi, K., Mohan, R., Büscher, D., Burgard, W., Valada, A.: Efficientlps: efficient lidar panoptic segmentation. IEEE Trans. Robot. (2021)

    Google Scholar 

  34. Sun, P., et al.: Sparse R-CNN: end-to-end object detection with learnable proposals. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 14454–14463 (2021)

    Google Scholar 

  35. Tan, J., Lu, X., Zhang, G., Yin, C., Li, Q.: Equalization loss v2: a new gradient balance approach for long-tailed object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1685–1694 (2021)

    Google Scholar 

  36. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9627–9636 (2019)

    Google Scholar 

  37. Valverde, F.R., Hurtado, J.V., Valada, A.: There is more than meets the eye: self-supervised multi-object detection and tracking with sound by distilling multimodal knowledge. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11612–11621 (2021)

    Google Scholar 

  38. Wilson, B., Leimeister, M.: Gradient descent in hyperbolic space. arXiv preprint arXiv:1805.08207 (2018)

  39. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2 (2019). https://github.com/facebookresearch/detectron2

  40. Yan, C., Chang, X., Luo, M., Liu, H., Zhang, X., Zheng, Q.: Semantics-guided contrastive network for zero-shot object detection. IEEE Trans. Pattern Anal. Mach. Intell. (2022)

    Google Scholar 

  41. Zheng, Y., Wu, J., Qin, Y., Zhang, F., Cui, L.: Zero-shot instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2593–2602 (2021)

    Google Scholar 

  42. Zhou, X., Koltun, V., Krähenbühl, P.: Probabilistic two-stage detection. arXiv preprint arXiv:2103.07461 (2021)

  43. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)

  44. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: Deformable Transformers for End-to-End Object Detection. arXiv preprint arXiv:2010.04159 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Lang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 288 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lang, C., Braun, A., Schillingmann, L., Valada, A. (2022). On Hyperbolic Embeddings in Object Detection. In: Andres, B., Bernard, F., Cremers, D., Frintrop, S., Goldlücke, B., Ihrke, I. (eds) Pattern Recognition. DAGM GCPR 2022. Lecture Notes in Computer Science, vol 13485. Springer, Cham. https://doi.org/10.1007/978-3-031-16788-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16788-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16787-4

  • Online ISBN: 978-3-031-16788-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics