Skip to main content

Meta Pixel Loss Correction for Medical Image Segmentation with Noisy Labels

  • Conference paper
  • First Online:
Medical Image Learning with Limited and Noisy Data (MILLanD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13559))

Included in the following conference series:

Abstract

Supervised training with deep learning has exhibited impressive performance in numerous medical image domains. However, previous successes rely on the availability of well-labeled data. In practice, it is a great challenge to obtain a large high-quality labeled dataset, especially for the medical image segmentation task, which generally needs pixel-wise labels, and the inaccurate label (noisy label) may significantly degrade the segmentation performance. In this paper, we propose a novel Meta Pixel Loss Correction (MPLC) based on a simple meta guided network for the medical segmentation that is robust to noisy labels. The core idea is to estimate a pixel transition confidence map by meta guided network to take full advantage of noisy labels for pixel-wise loss correction. To achieve this, we introduce a small size of meta dataset with the meta-learning method to train the whole model and help the meta guided network automatically learn the pixel transition confidence map in an alternative training manner. Experiments have been conducted on three medical image datasets, and the results demonstrate that our method is able to achieve superior segmentation with noisy labels compared to the existing state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armato, S.G., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Acad. Radiol. 14(12), 1455–1463 (2007)

    Article  Google Scholar 

  2. Audelan, B., Delingette, H.: Unsupervised quality control of image segmentation based on Bayesian learning. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 21–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_3

    Chapter  Google Scholar 

  3. Baumgartner, F., et al.: PHiSeg: capturing uncertainty in medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 119–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_14

    Chapter  Google Scholar 

  4. Han, X.: Automatic liver lesion segmentation using a deep convolutional neural network method (2017)

    Google Scholar 

  5. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 2011–2023 (2020). https://doi.org/10.1109/TPAMI.2019.2913372

    Article  Google Scholar 

  6. Huang, C., Han, H., Yao, Q., Zhu, S., Zhou, S.K.: 3D U\(^2\)-net: a 3D universal u-net for multi-domain medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 291–299. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_33

    Chapter  Google Scholar 

  7. Karimi, D., Dou, H., Warfield, S.K., Gholipour, A.: Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis. Med. Image Anal. 65, 101759 (2020)

    Article  Google Scholar 

  8. Kervadec, H., Dolz, J., Granger, É., Ben Ayed, I.: Curriculum semi-supervised segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 568–576. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_63

    Chapter  Google Scholar 

  9. Kohl, S.A., et al.: A probabilistic u-net for segmentation of ambiguous images. arXiv preprint arXiv:1806.05034 (2018)

  10. Menze, B.H., Jakab, A., Bauer, S., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  11. Mirikharaji, Z., Yan, Y., Hamarneh, G.: Learning to segment skin lesions from noisy annotations. In: Wang, Q., et al. (eds.) DART/MIL3ID -2019. LNCS, vol. 11795, pp. 207–215. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33391-1_24

    Chapter  Google Scholar 

  12. Mondal, A.K., Dolz, J., Desrosiers, C.: Few-shot 3d multi-modal medical image segmentation using generative adversarial learning. arXiv preprint arXiv:1810.12241 (2018)

  13. Ren, M., Zeng, W., Yang, B., Urtasun, R.: Learning to reweight examples for robust deep learning. In: International Conference on Machine Learning, pp. 4334–4343. PMLR (2018)

    Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Shu, J., et al.: Meta-weight-net: learning an explicit mapping for sample weighting. arXiv preprint arXiv:1902.07379 (2019)

  16. Song, H., Kim, M., Park, D., Shin, Y., Lee, J.G.: Learning from noisy labels with deep neural networks: a survey. IEEE Transactions on Neural Networks and Learning Systems (2022)

    Google Scholar 

  17. van Tulder, G.: Package elsticdeform. http://github.com/gvtulder/elasticdeform/. Accessed 4 Dec 2018

  18. Wang, J., Zhou, S., Fang, C., Wang, L., Wang, J.: Meta corrupted pixels mining for medical image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 335–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_33

    Chapter  Google Scholar 

  19. Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 605–613. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_67

    Chapter  Google Scholar 

  20. Zhu, H., Shi, J., Wu, J.: Pick-and-learn: automatic quality evaluation for noisy-labeled image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 576–584. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_64

    Chapter  Google Scholar 

Download references

Acknowledgment

This work was supported by by the National Natural Science Foundation of China under Grant 61790562 and Grant 61773312.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuotong Cai .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 308 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cai, Z., Xin, J., Shi, P., Zhou, S., Wu, J., Zheng, N. (2022). Meta Pixel Loss Correction for Medical Image Segmentation with Noisy Labels. In: Zamzmi, G., Antani, S., Bagci, U., Linguraru, M.G., Rajaraman, S., Xue, Z. (eds) Medical Image Learning with Limited and Noisy Data. MILLanD 2022. Lecture Notes in Computer Science, vol 13559. Springer, Cham. https://doi.org/10.1007/978-3-031-16760-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16760-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16759-1

  • Online ISBN: 978-3-031-16760-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics