Skip to main content

Quantification of Predictive Uncertainty via Inference-Time Sampling

  • Conference paper
  • First Online:
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE 2022)

Abstract

Predictive variability due to data ambiguities has typically been addressed via construction dedicated models with built-in probabilistic capabilities that are trained to predict uncertainty estimates as variables of interest. These approaches require distinct architectural components and training mechanisms, may include restrictive assumptions and exhibit overconfidence, i.e., high confidence in imprecise predictions. In this work, we propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity. The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions. It is architecture agnostic and can be applied to any feed-forward deterministic network without changes to the architecture nor training procedure. Experiments on regression tasks on imaging and non-imaging input data show the method’s ability to generate diverse and multi-modal predictive distributions and how estimated uncertainty correlates with prediction error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. UK Biobank homepage. https://www.ukbiobank.ac.uk/about-biobank-uk. Accessed 24 May 2021

  2. Baumgartner, C.F., et al.: PHiSeg: capturing uncertainty in medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 119–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_14

    Chapter  Google Scholar 

  3. Begoli, E., Bhattacharya, T., Kusnezov, D.: The need for uncertainty quantification in machine-assisted medical decision making. Nat. Mach. Intell. 1(1), 20–23 (2019). https://doi.org/10.1038/s42256-018-0004-1

    Article  Google Scholar 

  4. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science and Statistics, Springer, New York (2006)

    MATH  Google Scholar 

  5. Brooks, S., Gelman, A., Jones, G., Meng, X.L.: Handbook of Markov Chain Monte Carlo. CRC Press (2011)

    Google Scholar 

  6. Chang, J., Fisher, J.W.I.: Efficient MCMC sampling with implicit shape representations. In: CVPR, pp. 2081–2088. IEEE Computer Society (2011). http://dblp.uni-trier.de/db/conf/cvpr/cvpr2011.html#ChangF11

  7. Chen, S., Radke, R.J.: Markov chain Monte Carlo shape sampling using level sets. In: 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pp. 296–303 (2009). https://doi.org/10.1109/ICCVW.2009.5457687

  8. Draper, D.: Assessment and propagation of model uncertainty. J. R. Stat. Soci. Ser. B (Methodol.) 57(1), 45–97 (1995). http://www.jstor.org/stable/2346087

  9. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  10. Erdil, E., Yildirim, S., Çetin, M., Tasdizen, T.: MCMC shape sampling for image segmentation with nonparametric shape priors. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 411–419 (2016). https://doi.org/10.1109/CVPR.2016.51

  11. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: Balcan, M.F., Weinberger, K.Q. (eds.) Proceedings of The 33rd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 48, pp. 1050–1059. PMLR, New York, 20–22 June 2016. http://proceedings.mlr.press/v48/gal16.html

  12. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  13. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis, 2nd edn. Chapman and Hall/CRC (2004)

    Google Scholar 

  14. Graf, F., Kriegel, H.-P., Schubert, M., Pölsterl, S., Cavallaro, A.: 2D image registration in CT images using radial image descriptors. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6892, pp. 607–614. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23629-7_74

    Chapter  Google Scholar 

  15. Hammersley, J.M., Handscomb, D.C.: Monte Carlo Methods. Springer, Dordrecht (1964). https://doi.org/10.1007/978-94-009-5819-7

    Book  MATH  Google Scholar 

  16. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970). http://www.jstor.org/stable/2334940

  17. Houhou, N., Thiran, J.P., Bresson, X.: Fast texture segmentation model based on the shape operator and active contour. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008). https://doi.org/10.1109/CVPR.2008.4587449

  18. Izenman, A.J.: Modern Multivariate Statistical Techniques. Regression, Classification and Manifold Learning. Springer, New York (2008). https://doi.org/10.1007/978-0-387-78189-1

  19. Karani, N., Erdil, E., Chaitanya, K., Konukoglu, E.: Test-time adaptable neural networks for robust medical image segmentation. Med. Image Anal. 68, 101907 (2021). https://doi.org/10.1016/j.media.2020.101907, https://www.sciencedirect.com/science/article/pii/S1361841520302711

  20. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Guyon, I., von Luxburg, U., et al. (eds.) Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4–9 December 2017, Long Beach, CA, USA, pp. 5574–5584 (2017)

    Google Scholar 

  21. Kim, J., Fisher, J.W., III., Yezzi, A., Çetin, M., Willsky, A.S.: A nonparametric statistical method for image segmentation using information theory and curve evolution. IEEE Trans. Image Process. 14(10), 1486–1502 (2005)

    Article  MathSciNet  Google Scholar 

  22. Kindermann, J., Linden, A.: Inversion of neural networks by gradient descent. Parallel Comput. 14(3), 277–286 (1990). https://doi.org/10.1016/0167-8191(90)90081-J

    Article  Google Scholar 

  23. Kohl, S., et al.: A probabilistic u-net for segmentation of ambiguous images. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31. Curran Associates, Inc. (2018). https://proceedings.neurips.cc/paper/2018/file/473447ac58e1cd7e96172575f48dca3b-Paper.pdf

  24. Levy, D., Sohl-dickstein, J., Hoffman, M.: Generalizing Hamiltonian Monte Carlo with neural networks. In: ICLR 2018 (2018). https://openreview.net/pdf?id=B1n8LexRZ

  25. Michailovich, O., Rathi, Y., Tannenbaum, A.: Image segmentation using active contours driven by the Bhattacharyya gradient flow. IEEE Trans. Image Process. 16(11), 2787–2801 (2007). https://doi.org/10.1109/TIP.2007.908073

    Article  MathSciNet  Google Scholar 

  26. Milletari, F., Rothberg, A., Jia, J., Sofka, M.: Integrating statistical prior knowledge into convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 161–168. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_19

    Chapter  Google Scholar 

  27. Neal, R.M.: Probabilistic inference using Markov chain Monte Carlo methods. Technical report, CRG-TR-93-1, Department of Computer Science, University of Toronto (1993)

    Google Scholar 

  28. Neal, R.M.: Bayesian Learning for Neural Networks. Lecture Notes in Statistics, vol. 118. Springer, New York (1996). https://doi.org/10.1007/978-1-4612-0745-0

  29. Oktay, O., et al.: Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37(2), 384–395 (2018). https://doi.org/10.1109/TMI.2017.2743464

  30. Qiu, X., Meyerson, E., Miikkulainen, R.: Quantifying point-prediction uncertainty in neural networks via residual estimation with an I/O kernel. In: 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020. OpenReview.net (2020). https://openreview.net/forum?id=rkxNh1Stvr

  31. Rubin, D.B.: Bayesianly justifiable and relevant frequency calculations for the applied statistician. Ann. Stat. 12(4), 1151–1172 (1984). https://doi.org/10.1214/aos/1176346785

    Article  MathSciNet  MATH  Google Scholar 

  32. Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M., et al.: Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models. Wiley, Chichester (2004)

    Google Scholar 

  33. Song, J., Zhao, S., Ermon, S.: A-NICE-MC: adversarial training for MCMC. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper/2017/file/2417dc8af8570f274e6775d4d60496da-Paper.pdf

  34. Song, Y., Meng, C., Ermon, S.: MintNet: building invertible neural networks with masked convolutions. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019). https://proceedings.neurips.cc/paper/2019/file/70a32110fff0f26d301e58ebbca9cb9f-Paper.pdf

  35. Tanno, R., et al.: Bayesian image quality transfer with CNNs: exploring uncertainty in dMRI super-resolution. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 611–619. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_70

    Chapter  Google Scholar 

  36. Tanno, R., et al.: Uncertainty modelling in deep learning for safer neuroimage enhancement: demonstration in diffusion MRI. NeuroImage 225, 117366 (2021). https://doi.org/10.1016/j.neuroimage.2020.117366, https://www.sciencedirect.com/science/article/pii/S1053811920308521

  37. Tóthová, K., et al.: Probabilistic 3D surface reconstruction from sparse MRI information. In: MICCAI 2020. LNCS, vol. 12261, pp. 813–823. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_79

    Chapter  Google Scholar 

  38. Tóthová, K., et al.: Uncertainty quantification in CNN-based surface prediction using shape priors. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds.) ShapeMI 2018. LNCS, vol. 11167, pp. 300–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04747-4_28

    Chapter  Google Scholar 

  39. Wang, H., Levi, D.M., Klein, S.A.: Intrinsic uncertainty and integration efficiency in bisection acuity. Vis. Res. 36(5), 717–739 (1996). https://doi.org/10.1016/0042-6989(95)00143-3

    Article  Google Scholar 

Download references

Acknowledgements

This research has been conducted using the UK Biobank Resource under Application Number 17806.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarína Tóthová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tóthová, K., Ladický, Ľ., Thul, D., Pollefeys, M., Konukoglu, E. (2022). Quantification of Predictive Uncertainty via Inference-Time Sampling. In: Sudre, C.H., et al. Uncertainty for Safe Utilization of Machine Learning in Medical Imaging. UNSURE 2022. Lecture Notes in Computer Science, vol 13563. Springer, Cham. https://doi.org/10.1007/978-3-031-16749-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16749-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16748-5

  • Online ISBN: 978-3-031-16749-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics