Skip to main content

Generalized Probabilistic U-Net for Medical Image Segementation

  • Conference paper
  • First Online:
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE 2022)

Abstract

We propose the Generalized Probabilistic U-Net, which extends the Probabilistic U-Net [14] by allowing more general forms of the Gaussian distribution as the latent space distribution that can better approximate the uncertainty in the reference segmentations. We study the effect the choice of latent space distribution has on capturing the uncertainty in the reference segmentations using the LIDC-IDRI dataset. We show that the choice of distribution affects the sample diversity of the predictions and their overlap with respect to the reference segmentations. For the LIDC-IDRI dataset, we show that using a mixture of Gaussians results in a statistically significant improvement in the generalized energy distance (GED) metric with respect to the standard Probabilistic U-Net. We have made our implementation available at https://github.com/ishaanb92/GeneralizedProbabilisticUNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This subsection holds true for the cVAE prior distribution as well. The only difference is the dependence on the label, y, is dropped.

References

  1. Armato, III, S.G., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011). https://doi.org/10.1118/1.3528204

  2. Baumgartner, C.F., et al.: PHiSeg: capturing uncertainty in medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 119–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_14

  3. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, Heidelberg (2006)

    Google Scholar 

  4. Hershey, J.R., Olsen, P.A.: Approximating the Kullback Leibler divergence between gaussian mixture models. In: 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP 2007, vol. 4, pp. IV-317–IV-320 (2007). https://doi.org/10.1109/ICASSP.2007.366913

  5. Hu, S., Worrall, D., Knegt, S., Veeling, B., Huisman, H., Welling, M.: Supervised uncertainty quantification for segmentation with multiple annotations. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 137–145. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_16

  6. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 448–456. PMLR, Lille (2015). https://proceedings.mlr.press/v37/ioffe15.html

  7. Jang, E., Gu, S., Poole, B.: Categorical Reparameterization with Gumbel-Softmax. arXiv preprint arXiv:1611.01144 (2017). version: 2

  8. Jiang, Z., Zheng, Y., Tan, H., Tang, B., Zhou, H.: Variational Deep Embedding: An Unsupervised and Generative Approach to Clustering. arXiv preprint arXiv:1611.05148 (2017)

  9. Jungo, A., et al.: On the effect of inter-observer variability for a reliable estimation of uncertainty of medical image segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 682–690. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_77

  10. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, 7–9 May 2015, Conference Track Proceedings (2015)

    Google Scholar 

  12. Kingma, D.P., Welling, M.: An introduction to variational autoencoders. Found. Trends Mach. Learn. 12(4), 307–392 (2019). https://doi.org/10.1561/2200000056

    Article  MATH  Google Scholar 

  13. Kingma, D.P., Salimans, T., Welling, M.: Variational dropout and the local reparameterization trick. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc. (2015). https://proceedings.neurips.cc/paper/2015/file/bc7316929fe1545bf0b98d114ee3ecb8-Paper.pdf

  14. Kohl, S., et al.: A probabilistic U-Net for segmentation of ambiguous images. In: Advances in Neural Information Processing Systems, vol. 31. Curran Associates, Inc. (2018). https://papers.nips.cc/paper/2018/hash/473447ac58e1cd7e96172575f48dca3b-Abstract.html

  15. Kohl, S.A.A., et al.: A Hierarchical Probabilistic U-Net for Modeling Multi-Scale Ambiguities. arXiv preprint arXiv:1905.13077 (2019)

  16. Kopf, A., Fortuin, V., Somnath, V.R., Claassen, M.: Mixture-of-experts variational autoencoder for clustering and generating from similarity-based representations on single cell data. PLOS Comput. Biol. 17(6), e1009086 (2021) https://doi.org/10.1371/journal.pcbi.1009086

  17. Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J.E., Stoica, I.: Tune: a research platform for distributed model selection and training. arXiv preprint arXiv:1807.05118 (2018)

  18. Maddison, C.J., Mnih, A., Teh, Y.W.: The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables. arXiv preprint arXiv:1611.00712 (2017)

  19. Nalisnick, E.T., Hertel, L., Smyth, P.: Approximate inference for deep latent gaussian mixtures (2016)

    Google Scholar 

  20. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019)

    Google Scholar 

  21. Rezende, D.J., Mohamed, S.: Variational Inference with Normalizing Flows. arXiv preprint arXiv:1505.05770 (2016)

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  23. Selvan, R., Faye, F., Middleton, J., Pai, A.: Uncertainty quantification in medical image segmentation with normalizing flows. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds.) MLMI 2020. LNCS, vol. 12436, pp. 80–90. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59861-7_9

  24. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc. (2015)

    Google Scholar 

  25. Valiuddin, M.M.A., Viviers, C.G.A., van Sloun, R.J.G., de With, P.H.N., van der Sommen, F.: Improving aleatoric uncertainty quantification in multi-annotated medical image segmentation with normalizing flows. In: Sudre, C.H., et al. (eds.) UNSURE/PIPPI -2021. LNCS, vol. 12959, pp. 75–88. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87735-4_8

  26. Wainwright, M.J., Jordan, M.I.: Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn. 1(1–2), 1–305 (2007). https://doi.org/10.1561/2200000001

  27. Williams, P.M.: Using neural networks to model conditional multivariate densities. Neural Comput. 8(4), 843–854 (1996). https://doi.org/10.1162/neco.1996.8.4.843

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the project IMPACT (Intelligence based iMprovement of Personalized treatment And Clinical workflow supporT) in the framework of the EU research programme ITEA3 (Information Technology for European Advancement).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishaan Bhat .

Editor information

Editors and Affiliations

Appendices

A Neural Network Hyperparameters

We used the Tune [17] package to perform hyperparameters optimization. The number of hyperparameters changed based on the model/latent distribution. The number of U-Net encoder and decoder blocks was fixed at 3, and the filter depths used were 32, 64, 128 for the first, second and third blocks respectively. The bottleneck layer had a filter depth of 512. \(\beta \) is the weight assigned to the KL-divergence term in the Probabilistic U-Net loss function.

Table 2 contains the search space used to perform hyperparameter optimization.

B Example Predictions

To support the quantitative results in Sect. 5, we present example predictions, along with images and reference segmentations, in Fig. 4.

Fig. 4.
figure 4

Example image, labels, and predictions for the LIDC-IDRI dataset. The first row contains the image and the reference segmentations. The following rows show 16 samples drawn from the prediction distribution (used to compute the GED).

Table 2. Hyperparameter search space.
Table 3. LIDC-IDRI hyperparameters.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhat, I., Pluim, J.P.W., Kuijf, H.J. (2022). Generalized Probabilistic U-Net for Medical Image Segementation. In: Sudre, C.H., et al. Uncertainty for Safe Utilization of Machine Learning in Medical Imaging. UNSURE 2022. Lecture Notes in Computer Science, vol 13563. Springer, Cham. https://doi.org/10.1007/978-3-031-16749-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16749-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16748-5

  • Online ISBN: 978-3-031-16749-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics