Skip to main content

On the Formalization of the Heat Conduction Problem in HOL

  • Conference paper
  • First Online:
Intelligent Computer Mathematics (CICM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13467))

Included in the following conference series:

  • 468 Accesses

Abstract

Partial Differential Equations (PDEs) are widely used for modeling the physical phenomena and analyzing the dynamical behavior of many engineering and physical systems. The heat equation is one of the most well-known PDEs that captures the temperature distribution and diffusion of heat within a body. Due to the wider utility of these equations in various safety-critical applications, such as thermal protection systems, a formal analysis of the heat transfer is of utmost importance. In this paper, we propose to use higher-order-logic (HOL) theorem proving for formally analyzing the heat conduction problem in rectangular coordinates. In particular, we formally model the heat transfer as a one-dimensional heat equation for a rectangular slab using the multivariable calculus theories of the HOL Light theorem prover. This requires the formalization of the heat operator and formal verification of its various properties, such as linearity and scaling. Moreover, we use the separation of variables method for formally verifying the solution of the PDEs, which allows modeling the heat transfer in the slab under various initial and boundary conditions using HOL Light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.cl.cam.ac.uk/ jrh13/hol-light/.

  2. 2.

    https://hol-theorem-prover.org/.

  3. 3.

    https://isabelle.in.tum.de/.

  4. 4.

    https://coq.inria.fr/.

  5. 5.

    http://www.mizar.org/.

References

  1. Strauss, W.A.: Partial Differential Equations: An Introduction. Wiley, Hoboken (2007)

    Google Scholar 

  2. Hahn, D.W., Özisik, M.N.: Heat Conduction. Wiley, Hoboken (2012)

    Google Scholar 

  3. Jiji, L.M.: Heat Convection. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02971-4

  4. Howell, J.R., Mengüç, M.P., Daun, K., Siegel, R.: Thermal Radiation Heat Transfer. CRC Press, Boca Raton (2020)

    Google Scholar 

  5. Minkowycz, W., Sparrow, E.M., Schneider, G.E., Pletcher, R.H.: Handbook of Numerical Heat Transfer. Wiley-Interscience, New York (1988)

    Google Scholar 

  6. Han, J.C.: Analytical Heat Transfer. Taylor & Francis, Boca Raton (2012)

    Google Scholar 

  7. Smith, G.: Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford University Press, Oxford (1985)

    Google Scholar 

  8. Hughes, T.J.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications, Mineola (2000)

    Google Scholar 

  9. Evans, L.: Partial Differential Equations. American Mathematical Society, Berkeley (2010)

    Google Scholar 

  10. Andrews, L.C., Shivamoggi, B.K.: Integral Transforms for Engineers. SPIE Press, Bellingham (1999)

    Google Scholar 

  11. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  12. Deniz, E., Rashid, A.: On the Formalization of the Heat Conduction Problem in HOL, HOL Light Script. https://hvg.encs.concordia.ca/code/hol-light/he/heat_conduction.ml

  13. Immler, F., Hölzl, J.: Numerical analysis of ordinary differential equations in Isabelle/HOL. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 377–392. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32347-8_26

    Chapter  Google Scholar 

  14. Immler, F., Traut, C.: The flow of ODEs: formalization of variational equation and Poincaré map. J. Autom. Reason. 62(2), 215–236 (2018). https://doi.org/10.1007/s10817-018-9449-5

    Article  MATH  Google Scholar 

  15. Guan, Y., Zhang, J., Wang, G., Li, X., Shi, Z., Li, Y.: Formalization of Euler-Lagrange equation set based on variational calculus in HOL light. J. Autom. Reason. 65, 1–29 (2021)

    Article  MathSciNet  Google Scholar 

  16. Sanwal, M.U., Hasan, O.: Formal verification of cyber-physical systems: coping with continuous elements. In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7971, pp. 358–371. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39637-3_29

    Chapter  Google Scholar 

  17. Rashid, A., Hasan, O.: Formalization of transform methods using HOL light. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.) CICM 2017. LNCS (LNAI), vol. 10383, pp. 319–332. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62075-6_22

    Chapter  Google Scholar 

  18. Rashid, A., Hasan, O.: On the formalization of Fourier transform in higher-order logic. In: Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 483–490. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43144-4_31

    Chapter  Google Scholar 

  19. Rashid, A., Hasan, O.: Formal analysis of linear control systems using theorem proving. In: Duan, Z., Ong, L. (eds.) ICFEM 2017. LNCS, vol. 10610, pp. 345–361. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68690-5_21

    Chapter  Google Scholar 

  20. Rashid, A., Siddique, U., Hasan, O.: Formal verification of platoon control strategies. In: Johnsen, E.B., Schaefer, I. (eds.) SEFM 2018. LNCS, vol. 10886, pp. 223–238. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92970-5_14

    Chapter  Google Scholar 

  21. Boldo, S., Clément, F., Filliâtre, J.-C., Mayero, M., Melquiond, G., Weis, P.: Formal proof of a wave equation resolution scheme: the method error. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 147–162. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14052-5_12

    Chapter  Google Scholar 

  22. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Trusting computations: a mechanized proof from partial differential equations to actual program. Comput. Math. Appl. 68, 325–352 (2014)

    Article  MathSciNet  Google Scholar 

  23. Otsuki, S., Kawamoto, P.N., Yamazaki, H.: A simple example for linear partial differential equations and its solution using the method of separation of variables. Formalized Math. 27, 25–34 (2019)

    Article  Google Scholar 

  24. Braun, M., Golubitsky, M.: Differential Equations and Their Applications. Springer, New York (1983). https://doi.org/10.1007/978-1-4684-9229-3

  25. Hsu, T.R.: Applied Engineering Analysis. Wiley, Hoboken (2018)

    Google Scholar 

  26. Kline, M.: Calculus: An Intuitive and Physical Approach. Courier Corporation, North Chelmsford (1998)

    Google Scholar 

  27. De Monte, F.: Transient heat conduction in one-dimensional composite slab. A natural analytic approach. Int. J. Heat Mass Transfer 43, 3607–3619 (2000)

    Google Scholar 

  28. Blosser, M.L.: Analytical solution for transient thermal response of an insulated structure. J. Thermophys. Heat Transfer 27, 422–428 (2013)

    Article  Google Scholar 

  29. Montecucco, A., Buckle, J., Knox, A.: Solution to the 1-D unsteady heat conduction equation with internal joule heat generation for thermoelectric devices. Appl. Therm. Eng. 35, 177–184 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Deniz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deniz, E., Rashid, A., Hasan, O., Tahar, S. (2022). On the Formalization of the Heat Conduction Problem in HOL. In: Buzzard, K., Kutsia, T. (eds) Intelligent Computer Mathematics. CICM 2022. Lecture Notes in Computer Science(), vol 13467. Springer, Cham. https://doi.org/10.1007/978-3-031-16681-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16681-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16680-8

  • Online ISBN: 978-3-031-16681-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics