Skip to main content

Investigation of the Corrosion Resistance of Porous Permeable Materials with Protective Coatings

  • Conference paper
  • First Online:
Advanced Manufacturing Processes IV (InterPartner 2022)

Abstract

It is known that porous permeable materials are subject to corrosion during filtration and cleaning of aggressive media, which leads to failure. That is why the urgent task is to increase their corrosion resistance. This article is devoted to studying the corrosion resistance of PPM with combined protective coatings applied to their surface in the form of table salt and hydrochloric acid. The corrosion resistance of PPM with combined protective coatings applied in solutions of sodium chloride and hydrochloric acid has been studied. Combined protective coatings were formed by electric arc spraying and aluminum alloy methods on the surface of PPM and subsequent plasma electrolytic treatment. As a result, a combined protective coating is formed on the surface of the PPM. Based on potentiodynamic mode, the corrosion potentials in a solution of table salt move in the positive direction when a combined coating is applied to the surface of the PPM, which indicates a decrease in the corrosion activity of the surface. The corrosion currents of the combined protective coating for all the studied systems are reduced by 3 orders of magnitude, and an increase in the ratio of the cathode to anode current density reduces the rate of corrosion of the coating by another five times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Snizhko, L.O.: The nature of anodic gas at plasma electrolytic oxidation. Prot. Met. Phys. Chem. Surf. 50(6), 705–708 (2014). https://doi.org/10.1134/S2070205114060215

    Article  Google Scholar 

  2. Shatskyi, I.P., Ropyak, L.Y., Makoviichuk, M.V.: Strength optimization of a two-layer coating for the particular local loading conditions. Strength Mater. 48(5), 726–730 (2016). https://doi.org/10.1007/s11223-016-9817-5

    Article  Google Scholar 

  3. Ivanov, V., Vashchenko, S., Rong, Y.: Information support of the computer-aided fixture design system. In: CEUR Workshop Proceedings, vol. 1614, pp. 73–86 (2016)

    Google Scholar 

  4. Sakhnenko, N.D., Ved’, M.V., Androshchuk, D.S., et al.: Formation of coatings of mixed aluminum and manganese oxides on the AL25 alloy. Surf. Eng. Appl. Electrochem. 52, 145–151 (2016). https://doi.org/10.3103/S1068375516020113

  5. Hovorun, T.P., et al.: Physical-mechanical properties and structural-phase state of nanostructured wear-resistant coatings based on nitrides of refractory metals Ti and Zr. Funct. Mater. 26(3), 548–555 (2019). https://doi.org/10.15407/fm26.03.548

    Article  Google Scholar 

  6. Ivanov, V., Dehtiarov, I., Denysenko, Y., Malovana, N., Martynova, N.: Experimental diagnostic research of fixture. Diagnostyka 19(3), 3–9 (2018). https://doi.org/10.29354/diag/92293

    Article  Google Scholar 

  7. Shvets, S.V., Machado, J.: Numerical model of cutting tool blade wear. J. Eng. Sci. 8(2), A1–A5 (2021). https://doi.org/10.21272/jes.2021.8(2).a1

    Article  Google Scholar 

  8. Kostyk, K., et al.: Simulation of diffusion processes in chemical and thermal processing of machine parts. Processes 9(4), 698 (2021). https://doi.org/10.3390/pr9040698

    Article  Google Scholar 

  9. Hovorun, T.P., Berladir, K.V., Bilous, O.A., Lyubich, O.I., Vorobiov, S.I.: Development of alloy resistant in conditions of abrasive wear. Funct. Mater. 28(1), 170–177 (2021). https://doi.org/10.15407/fm28.01.170

    Article  Google Scholar 

  10. Ivanov, V., et al.: Numerical simulation of the system “fixture–workpiece” for lever machining. Int. J. Adv. Manuf. Technol. 91(1–4), 79–90 (2016). https://doi.org/10.1007/s00170-016-9701-2

    Article  Google Scholar 

  11. Ivanov, V., Pavlenko, I., Kuric, I., Kosov, M.: Mathematical modeling and numerical simulation of fixtures for fork-type parts manufacturing. In: Knapčíková, L., Balog, M. (eds.) Industry 4.0: Trends in Management of Intelligent Manufacturing Systems. EICC, pp. 133–142. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14011-3_12

    Chapter  Google Scholar 

  12. Falcade, T., et al.: Electrodeposition of diamond-like carbon films on titanium alloy using organic liquids: corrosion and wear resistance. Appl. Surf. Sci. 263, 18–24 (2012). https://doi.org/10.1016/j.apsusc.2012.08.052

    Article  Google Scholar 

  13. Kurz, P., Krysmann, W., Schneider, H.G.: Application fields of ANOF layers and composites. Cryst. Res. Technol. 21(12), 1603–1609 (1986). https://doi.org/10.1002/crat.2170211224

    Article  Google Scholar 

  14. Kaluđerović, M.R., Schreckenbach, J.P., Graf, H.-L.: Titanium dental implant surfaces obtained by anodic spark deposition – from the past to the future. Mater. Sci. Eng., C 69, 1429–1441 (2016). https://doi.org/10.1016/j.msec.2016.07.068

    Article  Google Scholar 

  15. Curto, B.D., Diamanti, M.V., Pria, P.D., Sbaiz, F., Cigada, A.: Anodic Spark Deposition treatments to increase reliability of Ti6Al4V modular prostheses. J. Appl. Biomater. Biomech. 7(3), 153–159 (2009)

    Google Scholar 

  16. Panov, V.A., Vasilyak, L.M., Vetchinin, S.P., et al.: Spark channel propagation in a mi-crobubble liquid. Plasma Phys. Rep. 42, 1074–1077 (2016). https://doi.org/10.1134/S1063780X16110064

    Article  Google Scholar 

  17. Sikdar, S., Menezes, P.V., Maccione, R., Jacob, T., Menezes, P.L.: Plasma electrolytic oxidation (PEO) process – processing, properties, and applications. Nanomaterials 11(6), 1375 (2021). https://doi.org/10.3390/nano11061375

    Article  Google Scholar 

  18. Mohedano, M., Mingo, B.: Special issue: plasma electrolytic oxidation (PEO) coatings. Coatings 11(1), 111 (2021). https://doi.org/10.3390/coatings11010111

  19. Merzliakov, I., Pavlenko, I., Chekh, O., Sharapov, S., Ivanov, V.: Mathematical modeling of operating process and technological features for designing the vortex type liquid-vapor jet apparatus. In: Ivanov, V., et al. (eds.) DSMIE 2019. LNME, pp. 613–622. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22365-6_61

    Chapter  Google Scholar 

  20. Kuroda, S., Kawakita, J., Watanabe, M., Katanoda, H.: Warm spraying—a novel coating process based on high-velocity impact of solid particles. Sci. Technol. Adv. Mater. 9(3), 033002 (2008)

    Article  Google Scholar 

  21. Voitovych, A.A., Pokhmurs’ka, H.V., Student, M.M., Student, O.Z.: Microstructure and abrasive-wear resistance of the vibration-deposited metal of core wires of the basic Fe–Cr–B system. Mater. Sci. 52(3), 365–370 (2016). https://doi.org/10.1007/s11003-016-9965-6

    Article  Google Scholar 

  22. Povstyanoy, O., Zabolotnyi, O., Rud, V., Kuzmov, A., Herasymchuk, H.: Modeling of processes for creation new porous permeable materials with adjustable properties. In: Ivanov, V., et al. (eds.) DSMIE 2019. LNME, pp. 456–465. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22365-6_46

    Chapter  Google Scholar 

  23. Tkachuk, V., Bozhydarnik, T., Rechun, O., Karavayev, T., Merezhko, N.: Assessment of the quality of alternative fuels for gasoline engines. In: Ivanov, V., et al. (eds.) DSMIE 2019. LNME, pp. 871–881. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22365-6_87

    Chapter  Google Scholar 

  24. Povstianoi, O.Y., et al.: Optimization of the properties of multilayer porous permeable materials. Mater. Sci. 56(4), 530–535 (2021). https://doi.org/10.1007/s11003-021-00460-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Imbirovych .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Povstyanoy, O., Imbirovych, N., Posuvailo, V., Zabolotnyi, O., Artyukh, T. (2023). Investigation of the Corrosion Resistance of Porous Permeable Materials with Protective Coatings. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I. (eds) Advanced Manufacturing Processes IV. InterPartner 2022. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-16651-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16651-8_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16650-1

  • Online ISBN: 978-3-031-16651-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics