Skip to main content

Atherosclerotic Cardiovascular Disease Prevention in the Older Adult: Part 2

  • Chapter
  • First Online:
Cardiovascular Disease in the Elderly

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 739 Accesses

Abstract

Cardiovascular disease (CVD) remains the leading cause of death globally and an ageing world population is expected to increase the burden of CVD further. Among older adults, CVD is also a major cause of disability, functional decline, loss of independence, and reduction in quality of life. Therefore, early and effective measures to prevent CVD are key global health priorities, including among the elderly. However, with a more limited life expectancy and a higher risk of iatrogenic adverse events, balancing risks and benefits of preventive strategies in older adults can present unique challenges for clinicians. Contributing to the challenge, older adults, particularly those with multiple comorbidities, have historically been excluded from major preventive trials, meaning that treatment decisions in these patients are often based on limited data or extrapolated from younger populations. In the subsequent two chapters, we aim to provide a pragmatic discussion on some of the key priorities and unique challenges faced when considering primary and secondary prevention of ASCVD in older patients. We will use the ABCDE approach as a framework for the discussion, highlighting current international guideline recommendations. This second chapter will cover ‘C, D and E’; cholesterol, cigarette smoking, diabetes, diet and exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ference BA, Ginsberg HN, Graham I, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38(32):2459–72. https://doi.org/10.1093/eurheartj/ehx144.

    Article  CAS  Google Scholar 

  2. Lewington S, Whitlock G, Clarke R, et al. Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet. 2007;370(9602):1829–39. https://doi.org/10.1016/s0140-6736(07)61778-4.

    Article  Google Scholar 

  3. Petersen LK, Christensen K, Kragstrup J. Lipid-lowering treatment to the end? A review of observational studies and RCTs on cholesterol and mortality in 80+−year olds. Age Ageing. 2010;39(6):674–80. https://doi.org/10.1093/ageing/afq129.

    Article  Google Scholar 

  4. Gencer B, Marston NA, Im K, et al. Efficacy and safety of lowering LDL cholesterol in older patients: a systematic review and meta-analysis of randomised controlled trials. Lancet. 2020;396(10263):1637–43. https://doi.org/10.1016/s0140-6736(20)32332-1.

    Article  CAS  Google Scholar 

  5. Mortensen MB, Nordestgaard BG. Elevated LDL cholesterol and increased risk of myocardial infarction and atherosclerotic cardiovascular disease in individuals aged 70-100 years: a contemporary primary prevention cohort. Lancet. 2020;396(10263):1644–52. https://doi.org/10.1016/s0140-6736(20)32233-9.

    Article  CAS  Google Scholar 

  6. Mortensen MB, Falk E. Primary prevention with statins in the elderly. J Am Coll Cardiol. 2018;71(1):85–94. https://doi.org/10.1016/j.jacc.2017.10.080.

    Article  Google Scholar 

  7. Ravnskov U, Diamond DM, Hama R, et al. Lack of an association or an inverse association between low-density-lipoprotein cholesterol and mortality in the elderly: a systematic review. BMJ Open. 2016;6(6):e010401. https://doi.org/10.1136/bmjopen-2015-010401.

    Article  Google Scholar 

  8. Takata Y, Ansai T, Soh I, et al. Serum total cholesterol concentration and 10-year mortality in an 85-year-old population. Clin Interv Aging. 2014;9:293–300. https://doi.org/10.2147/CIA.S53754.

    Article  CAS  Google Scholar 

  9. Johannesen CDL, Langsted A, Mortensen MB, Nordestgaard BG. Association between low density lipoprotein and all cause and cause specific mortality in Denmark: prospective cohort study. BMJ. 2020;371:m4266. https://doi.org/10.1136/bmj.m4266.

    Article  Google Scholar 

  10. Yi S-W, Yi J-J, Ohrr H. Total cholesterol and all-cause mortality by sex and age: a prospective cohort study among 12.8 million adults. Sci Rep. 2019;9(1):1596. https://doi.org/10.1038/s41598-018-38461-y.

    Article  CAS  Google Scholar 

  11. Liang Y, Vetrano DL, Qiu C. Serum total cholesterol and risk of cardiovascular and non-cardiovascular mortality in old age: a population-based study. BMC Geriatr. 2017;17(1):294. https://doi.org/10.1186/s12877-017-0685-z.

    Article  CAS  Google Scholar 

  12. Brescianini S, Maggi S, Farchi G, et al. Low total cholesterol and increased risk of dying: are low levels clinical warning signs in the elderly? Results from the Italian Longitudinal Study on Aging. J Am Geriatr Soc. 2003;51(7):991–6. https://doi.org/10.1046/j.1365-2389.2003.51313.x.

    Article  Google Scholar 

  13. Ranieri P, Rozzini R, Franzoni S, Barbisoni P, Trabucchi M. Serum cholesterol levels as a measure of frailty in elderly patients. Exp Aging Res. 1998;24(2):169–79. https://doi.org/10.1080/036107398244300.

    Article  CAS  Google Scholar 

  14. Spada RS, Toscano G, Cosentino FII, et al. Low total cholesterol predicts mortality in the nondemented oldest old. Arch Gerontol Geriatr. 2007;44:381–4. https://doi.org/10.1016/j.archger.2007.01.053.

    Article  CAS  Google Scholar 

  15. Grundy Scott M, Stone Neil J, Bailey Alison L, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139(25):e1082–143. https://doi.org/10.1161/CIR.0000000000000625.

    Article  CAS  Google Scholar 

  16. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur Heart J. 2019;41(1):111–88. https://doi.org/10.1093/eurheartj/ehz455.

    Article  Google Scholar 

  17. Arps K, Pallazola VA, Cardoso R, et al. Clinician’s guide to the updated ABCS of cardiovascular disease prevention: a review part 2. Am J Med. 2019;132(7):e599–609. https://doi.org/10.1016/j.amjmed.2019.01.031.

    Article  Google Scholar 

  18. Armitage J, Baigent C, Barnes E, et al. Efficacy and safety of statin therapy in older people: a meta-analysis of individual participant data from 28 randomised controlled trials. Lancet. 2019;393(10170):407–15. https://doi.org/10.1016/S0140-6736(18)31942-1.

    Article  Google Scholar 

  19. Pearson GJ, Thanassoulis G, Anderson TJ, et al. Canadian cardiovascular society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult. Can J Cardiol. 2021;37(8):1129–50. https://doi.org/10.1016/j.cjca.2021.03.016.

    Article  Google Scholar 

  20. Cardiovascular disease: risk assessment and reduction, including lipid modification (2014 (updated 2016)).

    Google Scholar 

  21. The West of Scotland Coronary Prevention Study Group. A coronary primary prevention study of Scottish men aged 45-64 years: Trial design. J Clin Epidemiol. 1992;45(8):849–60. https://doi.org/10.1016/0895-4356(92)90068-X.

    Article  Google Scholar 

  22. Shepherd J, Cobbe SM, Ford I, et al. Prevention of Coronary Heart Disease with Pravastatin in Men with Hypercholesterolemia. N Engl J Med. 1995;333(20):1301–8. https://doi.org/10.1056/NEJM199511163332001.

    Article  CAS  Google Scholar 

  23. Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA. 1998;279(20):1615–22. https://doi.org/10.1001/jama.279.20.1615.

    Article  CAS  Google Scholar 

  24. Downs JR, Beere PA, Whitney E, et al. Design & rationale of the air force/texas coronary atherosclerosis prevention study (AFCAPS/TexCAPS). Am J Cardiol. 1997;80(3):287–93. https://doi.org/10.1016/s0002-9149(97)00347-0.

    Article  CAS  Google Scholar 

  25. The ALLHAT Officers Coordinators for the ALLHAT Collaborative Research Group. Major outcomes in moderately hypercholesterolemic, hypertensive patients randomized to pravastatin vs usual carethe antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT-LLT). JAMA. 2002;288(23):2998–3007. https://doi.org/10.1001/jama.288.23.2998.

    Article  Google Scholar 

  26. Han BH, Sutin D, Williamson JD, et al. Effect of statin treatment vs usual care on primary cardiovascular prevention among older adults: the ALLHAT-LLT randomized clinical trial. JAMA Intern Med. 2017;177(7):955–65. https://doi.org/10.1001/jamainternmed.2017.1442.

    Article  Google Scholar 

  27. Shepherd J, Blauw GJ, Murphy MB, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet. 2002;360(9346):1623–30. https://doi.org/10.1016/S0140-6736(02)11600-X.

    Article  CAS  Google Scholar 

  28. Sever PS, Dahlöf B, Poulter NR, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial—Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet. 2003;361(9364):1149–58. https://doi.org/10.1016/s0140-6736(03)12948-0.

    Article  CAS  Google Scholar 

  29. Sever PS, Dahlöf B, Poulter NR, et al. Rationale, design, methods and baseline demography of participants of the Anglo-Scandinavian Cardiac Outcomes Trial. ASCOT investigators. J Hypertens. 2001;19(6):1139–47. https://doi.org/10.1097/00004872-200106000-00020.

    Article  CAS  Google Scholar 

  30. Colhoun HM, Thomason MJ, Mackness MI, et al. Design of the collaborative atorvastatin diabetes study (CARDS) in patients with type 2 diabetes. Diabet Med. 2002;19(3):201–11. https://doi.org/10.1046/j.1464-5491.2002.00643.x.

    Article  CAS  Google Scholar 

  31. Colhoun HM, Betteridge DJ, Durrington PN, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet. 2004;364(9435):685–96. https://doi.org/10.1016/s0140-6736(04)16895-5.

    Article  CAS  Google Scholar 

  32. Nakamura H, Arakawa K, Itakura H, et al. Primary prevention of cardiovascular disease with pravastatin in Japan (MEGA Study): a prospective randomised controlled trial. Lancet. 2006;368(9542):1155–63. https://doi.org/10.1016/S0140-6736(06)69472-5.

    Article  CAS  Google Scholar 

  33. Management of Elevated Cholesterol in the Primary Prevention Group of Adult Japanese (MEGA) Study Group. Design and baseline characteristics of a study of primary prevention of coronary events with pravastatin among Japanese with mildly elevated cholesterol levels. Circ J. 2004;68(9):860–7. https://doi.org/10.1253/circj.68.860.

    Article  Google Scholar 

  34. Ridker PM, Danielson E, Fonseca FAH, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008s;359(21):2195–207. https://doi.org/10.1056/NEJMoa0807646.

    Article  CAS  Google Scholar 

  35. Yusuf S, Bosch J, Dagenais G, et al. Cholesterol lowering in intermediate-risk persons without cardiovascular disease. N Engl J Med. 2016;374(21):2021–31. https://doi.org/10.1056/NEJMoa1600176.

    Article  CAS  Google Scholar 

  36. Savarese G, Gotto AM, Paolillo S, et al. Benefits of Statins in Elderly Subjects Without Established Cardiovascular Disease: A Meta-Analysis. J Am Coll Cardiol. 2013;62(22):2090–9. https://doi.org/10.1016/j.jacc.2013.07.069.

    Article  CAS  Google Scholar 

  37. Neil HA, DeMicco DA, Luo D, et al. Analysis of efficacy and safety in patients aged 65-75 years at randomization: Collaborative Atorvastatin Diabetes Study (CARDS). Diabetes Care. 2006;29(11):2378–84. https://doi.org/10.2337/dc06-0872.

    Article  CAS  Google Scholar 

  38. Teng M, Lin L, Zhao YJ, et al. Statins for primary prevention of cardiovascular disease in elderly patients: systematic review and meta-analysis. Drugs Aging. 2015;32(8):649–61. https://doi.org/10.1007/s40266-015-0290-9.

    Article  CAS  Google Scholar 

  39. Glynn RJ, Koenig W, Nordestgaard BG, Shepherd J, Ridker PM. Rosuvastatin for primary prevention in older persons with elevated C-reactive protein and low to average low-density lipoprotein cholesterol levels: exploratory analysis of a randomized trial. Ann Intern Med. 2010;152(8):488–96, w174. https://doi.org/10.7326/0003-4819-152-8-201004200-00005.

    Article  Google Scholar 

  40. Ridker PM, Lonn E, Paynter NP, Glynn R, Yusuf S. Primary prevention with statin therapy in the elderly. Circulation. 2017;135(20):1979–81. https://doi.org/10.1161/CIRCULATIONAHA.117.028271.

    Article  Google Scholar 

  41. de Lorgeril M, Salen P, Abramson J, et al. Cholesterol lowering, cardiovascular diseases, and the rosuvastatin-JUPITER controversy: a critical reappraisal. Arch Intern Med. 2010;170(12):1032–6. https://doi.org/10.1001/archinternmed.2010.184.

    Article  Google Scholar 

  42. Nissen SE. The Jupiter trial: key findings, controversies, and implications. Curr Cardiol Rep. 2009;11(2):81–2. https://doi.org/10.1007/s11886-009-0013-0.

    Article  Google Scholar 

  43. Vaccarino V, Bremner JD, Kelley ME. JUPITER: a few words of caution. Circ Cardiovasc Qual Outcomes. 2009;2(3):286–8. https://doi.org/10.1161/CIRCOUTCOMES.109.850404.

    Article  Google Scholar 

  44. Kleipool EEF, Dorresteijn JAN, Smulders YM, Visseren FLJ, Peters MJL, Muller M. Treatment of hypercholesterolaemia in older adults calls for a patient-centred approach. Heart. 2020;106(4):261. https://doi.org/10.1136/heartjnl-2019-315600.

    Article  Google Scholar 

  45. Ouchi Y, Sasaki J, Arai H, et al. Ezetimibe lipid-lowering trial on prevention of atherosclerotic cardiovascular disease in 75 or older (EWTOPIA 75). Circulation. 2019;140(12):992–1003. https://doi.org/10.1161/CIRCULATIONAHA.118.039415.

    Article  CAS  Google Scholar 

  46. Orkaby AR, Driver JA, Ho Y-L, et al. Association of statin use with all-cause and cardiovascular mortality in US veterans 75 years and older. JAMA. 2020;324(1):68–78. https://doi.org/10.1001/jama.2020.7848.

    Article  CAS  Google Scholar 

  47. Kim K, Lee CJ, Shim CY, et al. Statin and clinical outcomes of primary prevention in individuals aged >75 years: The SCOPE-75 study. Atherosclerosis. 2019;284:31–6. https://doi.org/10.1016/j.atherosclerosis.2019.02.026.

    Article  CAS  Google Scholar 

  48. Jun JE, Cho IJ, Han K, et al. Statins for primary prevention in adults aged 75 years and older: A nationwide population-based case-control study. Atherosclerosis. 2019;283:28–34. https://doi.org/10.1016/j.atherosclerosis.2019.01.030.

    Article  CAS  Google Scholar 

  49. Bezin J, Moore N, Mansiaux Y, Steg PG, Pariente A. Real-life benefits of statins for cardiovascular prevention in elderly subjects: a population-based cohort study. Am J Med. 2019;132(6):740–748.e7. https://doi.org/10.1016/j.amjmed.2018.12.032.

    Article  CAS  Google Scholar 

  50. Giral P, Neumann A, Weill A, Coste J. Cardiovascular effect of discontinuing statins for primary prevention at the age of 75 years: a nationwide population-based cohort study in France. Eur Heart J. 2019;40(43):3516–25. https://doi.org/10.1093/eurheartj/ehz458.

    Article  CAS  Google Scholar 

  51. Gitsels LA, Bakbergenuly I, Steel N, Kulinskaya E. Do statins reduce mortality in older people? Findings from a longitudinal study using primary care records. Fam Med Community Health. 2021;9(2):e000780. https://doi.org/10.1136/fmch-2020-000780.

    Article  Google Scholar 

  52. Ramos R, Comas-Cufí M, Martí-Lluch R, et al. Statins for primary prevention of cardiovascular events and mortality in old and very old adults with and without type 2 diabetes: retrospective cohort study. BMJ. 2018;362:k3359. https://doi.org/10.1136/bmj.k3359.

    Article  Google Scholar 

  53. Baik SH, McDonald CJ. Independent effects of 15 commonly prescribed drugs on all-cause mortality among US elderly patients with type 2 diabetes mellitus. BMJ Open Diab Res Care. 2020;8(1):e000940. https://doi.org/10.1136/bmjdrc-2019-000940.

    Article  Google Scholar 

  54. Orkaby AR, Gaziano JM, Djousse L, Driver JA. Statins for primary prevention of cardiovascular events and mortality in older men. J Am Geriatr Soc. 2017;65(11):2362–8. https://doi.org/10.1111/jgs.14993.

    Article  Google Scholar 

  55. Singh S, Zieman S, Go AS, et al. Statins for primary prevention in older adults—moving toward evidence-based decision-making. J Am Geriatr Soc. 2018;66(11):2188–96. https://doi.org/10.1111/jgs.15449.

    Article  Google Scholar 

  56. Cannon CP, Blazing MA, Giugliano RP, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372(25):2387–97. https://doi.org/10.1056/NEJMoa1410489.

    Article  CAS  Google Scholar 

  57. Bach RG, Cannon CP, Giugliano RP, et al. Effect of simvastatin-ezetimibe compared with simvastatin monotherapy after acute coronary syndrome among patients 75 years or older: a secondary analysis of a randomized clinical trial. JAMA Cardiol. 2019;4(9):846–54. https://doi.org/10.1001/jamacardio.2019.2306.

    Article  Google Scholar 

  58. Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376(18):1713–22. https://doi.org/10.1056/NEJMoa1615664.

    Article  CAS  Google Scholar 

  59. Sever P, Gouni-Berthold I, Keech A, et al. LDL-cholesterol lowering with evolocumab, and outcomes according to age and sex in patients in the FOURIER trial. Eur J Prev Cardiol. 2021;28(8):805–12. https://doi.org/10.1177/2047487320902750.

    Article  Google Scholar 

  60. Sinnaeve PR, Schwartz GG, Wojdyla DM, et al. Effect of alirocumab on cardiovascular outcomes after acute coronary syndromes according to age: an ODYSSEY OUTCOMES trial analysis. Eur Heart J. 2020;41(24):2248–58. https://doi.org/10.1093/eurheartj/ehz809.

    Article  CAS  Google Scholar 

  61. Thompson PD, Panza G, Zaleski A, Taylor B. Statin-Associated Side Effects. J Am Coll Cardiol. 2016;67(20):2395–410. https://doi.org/10.1016/j.jacc.2016.02.071.

    Article  CAS  Google Scholar 

  62. Iwere RB, Hewitt J. Myopathy in older people receiving statin therapy: a systematic review and meta-analysis. Br J Clin Pharmacol. 2015;80(3):363–71. https://doi.org/10.1111/bcp.12687.

    Article  CAS  Google Scholar 

  63. Macedo AF, Taylor FC, Casas JP, Adler A, Prieto-Merino D, Ebrahim S. Unintended effects of statins from observational studies in the general population: systematic review and meta-analysis. BMC Med. 2014;12(1):51. https://doi.org/10.1186/1741-7015-12-51.

    Article  Google Scholar 

  64. Newman CB, Preiss D, Tobert JA, et al. Statin safety and associated adverse events: a scientific statement from the american heart association. Arterioscler Thromb Vasc Biol. 2019;39(2):e38–81. https://doi.org/10.1161/ATV.0000000000000073.

    Article  CAS  Google Scholar 

  65. Jones M, Tett S, Peeters GMEE, Mishra GD, Dobson A. New-onset diabetes after statin exposure in elderly women: the australian longitudinal study on women’s health. Drugs Aging. 2017;34(3):203–9. https://doi.org/10.1007/s40266-017-0435-0.

    Article  CAS  Google Scholar 

  66. Ott BR, Daiello LA, Dahabreh IJ, et al. Do statins impair cognition? A systematic review and meta-analysis of randomized controlled trials. J Gen Intern Med. 2015;30(3):348–58. https://doi.org/10.1007/s11606-014-3115-3.

    Article  Google Scholar 

  67. Hale M, Zaman H, Mehdizadeh D, et al. Association between statins prescribed for primary and secondary prevention and major adverse cardiac events among older adults with frailty: a systematic review. Drugs Aging. 2020;37(11):787–99. https://doi.org/10.1007/s40266-020-00798-3.

    Article  Google Scholar 

  68. Thompson W, Pottegård A, Nielsen JB, Haastrup P, Jarbøl DE. How common is statin use in the oldest old? Drugs Aging. 2018;35(8):679–86. https://doi.org/10.1007/s40266-018-0567-x.

    Article  CAS  Google Scholar 

  69. Gulliford M, Ravindrarajah R, Hamada S, Jackson S, Charlton J. Inception and deprescribing of statins in people aged over 80 years: cohort study. Age Ageing. 2017;46(6):1001–5. https://doi.org/10.1093/ageing/afx100.

    Article  Google Scholar 

  70. Kutner JS, Blatchford PJ, Taylor DH Jr, et al. Safety and benefit of discontinuing statin therapy in the setting of advanced, life-limiting illness: a randomized clinical trial. JAMA Intern Med. 2015;175(5):691–700. https://doi.org/10.1001/jamainternmed.2015.0289.

    Article  Google Scholar 

  71. Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease: an update. J Am Coll Cardiol. 2004;43(10):1731–7. https://doi.org/10.1016/j.jacc.2003.12.047.

    Article  CAS  Google Scholar 

  72. Cornelius M, Wang T, Jamal A, Loretan C, Neff L. Tobacco product use among adults - United States, 2019. MMWR Morb Mortal Wkly Rep. 2020;69:1736–42. https://doi.org/10.15585/mmwr.mm6946a4.

    Article  Google Scholar 

  73. Mons U, Müezzinler A, Gellert C, et al. Impact of smoking and smoking cessation on cardiovascular events and mortality among older adults: meta-analysis of individual participant data from prospective cohort studies of the CHANCES consortium. BMJ. 2015;350:h1551. https://doi.org/10.1136/bmj.h1551.

    Article  Google Scholar 

  74. Gellert C, Schöttker B, Brenner H. Smoking and all-cause mortality in older people: systematic review and meta-analysis. Arch Intern Med. 2012;172(11):837–44. https://doi.org/10.1001/archinternmed.2012.1397.

    Article  Google Scholar 

  75. Müezzinler A, Mons U, Gellert C, et al. Smoking and all-cause mortality in older adults: results from the CHANCES consortium. Am J Prev Med. 2015;49(5):e53–63. https://doi.org/10.1016/j.amepre.2015.04.004.

    Article  Google Scholar 

  76. Doll R, Peto R, Boreham J, Sutherland I. Mortality in relation to smoking: 50 years’ observations on male British doctors. BMJ. 2004;328(7455):1519. https://doi.org/10.1136/bmj.38142.554479.AE.

    Article  Google Scholar 

  77. Taylor DH Jr, Hasselblad V, Henley SJ, Thun MJ, Sloan FA. Benefits of smoking cessation for longevity. Am J Public Health. 2002;92(6):990–6. https://doi.org/10.2105/ajph.92.6.990.

    Article  Google Scholar 

  78. Burns DM. Cigarette smoking among the elderly: disease consequences and the benefits of cessation. Am J Health Promot. 2000;14(6):357–61. https://doi.org/10.4278/0890-1171-14.6.357.

    Article  CAS  Google Scholar 

  79. Qiu D, Chen T, Liu T, Song F. Smoking cessation and related factors in middle-aged and older Chinese adults: evidence from a longitudinal study. PLoS One. 2020;15(10):e0240806. https://doi.org/10.1371/journal.pone.0240806.

    Article  CAS  Google Scholar 

  80. Doolan DM, Froelicher ES. Smoking cessation interventions and older adults. Prog Cardiovasc Nurs. 2008;23(3):119–27. https://doi.org/10.1111/j.1751-7117.2008.00001.x.

    Article  Google Scholar 

  81. Appel DW, Aldrich TK. Smoking cessation in the elderly. Clin Geriatr Med. 2003;19(1):77–100. https://doi.org/10.1016/S0749-0690(02)00053-8.

    Article  Google Scholar 

  82. Henley SJ, Asman K, Momin B, et al. Smoking cessation behaviors among older U.S. adults. Prev Med Rep. 2019;16:100978. https://doi.org/10.1016/j.pmedr.2019.100978.

    Article  Google Scholar 

  83. Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140(11):e596–646. https://doi.org/10.1161/CIR.0000000000000678.

    Article  Google Scholar 

  84. Piepoli MF, Hoes AW, Agewall S, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J. 2016;37(29):2315–81. https://doi.org/10.1093/eurheartj/ehw106.

    Article  Google Scholar 

  85. Stead LF, Perera R, Bullen C, et al. Nicotine replacement therapy for smoking cessation. Cochrane Database Syst Rev. 2012;11:Cd000146. https://doi.org/10.1002/14651858.CD000146.pub4.

    Article  Google Scholar 

  86. Roddy E. Bupropion and other non-nicotine pharmacotherapies. BMJ. 2004;328(7438):509–11. https://doi.org/10.1136/bmj.328.7438.509.

    Article  Google Scholar 

  87. Koegelenberg CF, Noor F, Bateman ED, et al. Efficacy of varenicline combined with nicotine replacement therapy vs varenicline alone for smoking cessation: a randomized clinical trial. JAMA. 2014;312(2):155–61. https://doi.org/10.1001/jama.2014.7195.

    Article  CAS  Google Scholar 

  88. Anthenelli RM, Benowitz NL, West R, et al. Neuropsychiatric safety and efficacy of varenicline, bupropion, and nicotine patch in smokers with and without psychiatric disorders (EAGLES): a double-blind, randomised, placebo-controlled clinical trial. Lancet. 2016;387(10037):2507–20. https://doi.org/10.1016/s0140-6736(16)30272-0.

    Article  CAS  Google Scholar 

  89. Gonzales D, Rennard SI, Nides M, et al. Varenicline, an α4β2 nicotinic acetylcholine receptor partial agonist, vs sustained-release bupropion and placebo for smoking cessationa randomized controlled trial. JAMA. 2006;296(1):47–55. https://doi.org/10.1001/jama.296.1.47.

    Article  CAS  Google Scholar 

  90. Qasim H, Karim ZA, Rivera JO, Khasawneh FT, Alshbool FZ. Impact of electronic cigarettes on the cardiovascular system. J Am Heart Assoc. 2017;6(9):e006353. https://doi.org/10.1161/JAHA.117.006353.

    Article  Google Scholar 

  91. Alzahrani T, Pena I, Temesgen N, Glantz SA. Association between electronic cigarette use and myocardial infarction. Am J Prev Med. 2018;55(4):455–61. https://doi.org/10.1016/j.amepre.2018.05.004.

    Article  Google Scholar 

  92. Pisinger C, Døssing M. A systematic review of health effects of electronic cigarettes. Prev Med. 2014;69:248–60. https://doi.org/10.1016/j.ypmed.2014.10.009.

    Article  Google Scholar 

  93. Sarwar N, Gao P, Seshasai SR, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215–22. https://doi.org/10.1016/s0140-6736(10)60484-9.

    Article  CAS  Google Scholar 

  94. National Diabetes Statistics Report 2020: Estimates of Diabetes and Its Burden in the United States (2020).

    Google Scholar 

  95. American Diabetes A. 2. classification and diagnosis of diabetes: standards of medical care in diabetes—2021. Diabetes Care. 2021;44(Suppl 1):S15. https://doi.org/10.2337/dc21-S002.

    Article  Google Scholar 

  96. Meneilly GS, Knip A, Miller DB, Sherifali D, Tessier D, Zahedi A. Diabetes in older people. Can J Diabetes. 2018;42(Suppl 1):S283–s295. https://doi.org/10.1016/j.jcjd.2017.10.021.

    Article  Google Scholar 

  97. Sattar N, Rawshani A, Franzén S, et al. Age at diagnosis of type 2 diabetes mellitus and associations with cardiovascular and mortality risks. Circulation. 2019;139(19):2228–37. https://doi.org/10.1161/circulationaha.118.037885.

    Article  Google Scholar 

  98. Masuch A, Friedrich N, Roth J, Nauck M, Müller UA, Petersmann A. Preventing misdiagnosis of diabetes in the elderly: age-dependent HbA1c reference intervals derived from two population-based study cohorts. BMC Endocr Disord. 2019;19(1):20. https://doi.org/10.1186/s12902-019-0338-7.

    Article  Google Scholar 

  99. Roth J, Müller N, Lehmann T, Heinemann L, Wolf G, Müller UA. HbA1c and age in non-diabetic subjects: an ignored association? Exp Clin Endocrinol Diabetes. 2016;124(10):637–42. https://doi.org/10.1055/s-0042-105440.

    Article  CAS  Google Scholar 

  100. Pani LN, Korenda L, Meigs JB, et al. Effect of aging on A1C levels in individuals without diabetes: evidence from the Framingham Offspring Study and the National Health and Nutrition Examination Survey 2001-2004. Diabetes Care. 2008;31(10):1991–6. https://doi.org/10.2337/dc08-0577.

    Article  Google Scholar 

  101. Lipska KJ, De Rekeneire N, Van Ness PH, et al. Identifying dysglycemic states in older adults: implications of the emerging use of hemoglobin A1c. J Clin Endocrinol Metab. 2010;95(12):5289–95. https://doi.org/10.1210/jc.2010-1171.

    Article  CAS  Google Scholar 

  102. Cosentino F, Grant PJ, Aboyans V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: The Task Force for diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). Eur Heart J. 2019;41(2):255–323. https://doi.org/10.1093/eurheartj/ehz486.

    Article  Google Scholar 

  103. American Diabetes A. 11. Microvascular complications and foot care: standards of medical care in diabetes—2021. Diabetes Care. 2021;44(Supplement 1):S151. https://doi.org/10.2337/dc21-S011.

    Article  Google Scholar 

  104. Zoungas S, Arima H, Gerstein HC, et al. Effects of intensive glucose control on microvascular outcomes in patients with type 2 diabetes: a meta-analysis of individual participant data from randomised controlled trials. Lancet Diabetes Endocrinol. 2017;5(6):431–7. https://doi.org/10.1016/s2213-8587(17)30104-3.

    Article  Google Scholar 

  105. Nathan DM, Genuth S, Lachin J, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86. https://doi.org/10.1056/nejm199309303291401.

    Article  CAS  Google Scholar 

  106. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353(25):2643–53. https://doi.org/10.1056/NEJMoa052187.

    Article  Google Scholar 

  107. Ohkubo Y, Kishikawa H, Araki E, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract. 1995;28(2):103–17. https://doi.org/10.1016/0168-8227(95)01064-K.

    Article  CAS  Google Scholar 

  108. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352(9131):837–53. https://doi.org/10.1016/S0140-6736(98)07019-6.

    Article  Google Scholar 

  109. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352(9131):854–65. https://doi.org/10.1016/S0140-6736(98)07037-8.

    Article  Google Scholar 

  110. Azad N, Emanuele NV, Abraira C, et al. The effects of intensive glycemic control on neuropathy in the VA cooperative study on type II diabetes mellitus (VA CSDM). J Diabetes Complications. 1999;13(5–6):307–13. https://doi.org/10.1016/s1056-8727(99)00062-8.

    Article  CAS  Google Scholar 

  111. Abraira C, Emanuele N, Colwell J, et al. Glycemic control and complications in type II diabetes. Design of a feasibility trial. VA CS Group (CSDM). Diabetes Care. 1992;15(11):1560–71. https://doi.org/10.2337/diacare.15.11.1560.

    Article  CAS  Google Scholar 

  112. Bagg W, Plank LD, Gamble G, Drury PL, Sharpe N, Braatvedt GD. The effects of intensive glycaemic control on body composition in patients with type 2 diabetes. Diabetes, Obesity and Metabolism. 2001;3(6):410–6. https://doi.org/10.1046/j.1463-1326.2001.00153.x.

    Article  CAS  Google Scholar 

  113. Becker A, van der Does FE, van Hinsbergh VW, Heine RJ, Bouter LM, Stehouwer CD. Improvement of glycaemic control in type 2 diabetes: favourable changes in blood pressure, total cholesterol and triglycerides, but not in HDL cholesterol, fibrinogen, Von Willebrand factor and (pro)insulin. Neth J Med. 2003;61(4):129–36.

    CAS  Google Scholar 

  114. van der Does FE, de Neeling JN, Snoek FJ, et al. Randomized study of two different target levels of glycemic control within the acceptable range in type 2 diabetes. Effects on well-being at 1 year. Diabetes Care. 1998;21(12):2085–93. https://doi.org/10.2337/diacare.21.12.2085.

    Article  Google Scholar 

  115. Gæde P, Vedel P, Larsen N, Jensen GVH, Parving H-H, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348(5):383–93. https://doi.org/10.1056/NEJMoa021778.

    Article  Google Scholar 

  116. Gæde P, Vedel P, Parving H-H, Pedersen O. Intensified multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: the Steno type 2 randomised study. Lancet. 1999;353(9153):617–22. https://doi.org/10.1016/S0140-6736(98)07368-1.

    Article  Google Scholar 

  117. Charbonnel B, Dormandy J, Erdmann E, Massi-Benedetti M, Skene A. The prospective pioglitazone clinical trial in macrovascular events (PROactive): can pioglitazone reduce cardiovascular events in diabetes? Study design and baseline characteristics of 5238 patients. Diabetes Care. 2004;27(7):1647–53. https://doi.org/10.2337/diacare.27.7.1647.

    Article  Google Scholar 

  118. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366(9493):1279–89. https://doi.org/10.1016/s0140-6736(05)67528-9.

    Article  CAS  Google Scholar 

  119. Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72. https://doi.org/10.1056/NEJMoa0802987.

    Article  CAS  Google Scholar 

  120. The Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–59. https://doi.org/10.1056/NEJMoa0802743.

    Article  Google Scholar 

  121. Hage C, Norhammar A, Grip L, et al. Glycaemic control and restenosis after percutaneous coronary interventions in patients with diabetes mellitus: a report from the Insulin Diabetes Angioplasty study. Diab Vasc Dis Res. 2009;6(2):71–9. https://doi.org/10.1177/1479164109336042.

    Article  Google Scholar 

  122. Duckworth W, Abraira C, Moritz T, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129–39. https://doi.org/10.1056/NEJMoa0808431.

    Article  CAS  Google Scholar 

  123. Abraira C, Duckworth W, McCarren M, et al. Design of the cooperative study on glycemic control and complications in diabetes mellitus type 2: veterans affairs diabetes trial. J Diabetes Complications. 2003;17(6):314–22. https://doi.org/10.1016/s1056-8727(02)00277-5.

    Article  Google Scholar 

  124. Araki A, Iimuro S, Sakurai T, et al. Long-term multiple risk factor interventions in Japanese elderly diabetic patients: the Japanese Elderly Diabetes Intervention Trial--study design, baseline characteristics and effects of intervention. Geriatr Gerontol Int. 2012;12(Suppl 1):7–17. https://doi.org/10.1111/j.1447-0594.2011.00808.x.

    Article  Google Scholar 

  125. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89. https://doi.org/10.1056/NEJMoa0806470.

    Article  CAS  Google Scholar 

  126. Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358(6):580–91. https://doi.org/10.1056/NEJMoa0706245.

    Article  CAS  Google Scholar 

  127. Zoungas S, Chalmers J, Neal B, et al. Follow-up of blood-pressure lowering and glucose control in type 2 diabetes. N Engl J Med. 2014;371(15):1392–406. https://doi.org/10.1056/NEJMoa1407963.

    Article  CAS  Google Scholar 

  128. The Accord Study Group. Long-term effects of intensive glucose lowering on cardiovascular outcomes. N Engl J Med. 2011;364(9):818–28. https://doi.org/10.1056/NEJMoa1006524.

    Article  Google Scholar 

  129. The Accord Study Group. Nine-year effects of 3.7 years of intensive glycemic control on cardiovascular outcomes. Diabetes Care. 2016;39(5):701. https://doi.org/10.2337/dc15-2283.

    Article  CAS  Google Scholar 

  130. Hayward RA, Reaven PD, Wiitala WL, et al. Follow-up of glycemic control and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;372(23):2197–206. https://doi.org/10.1056/NEJMoa1414266.

    Article  CAS  Google Scholar 

  131. Reaven PD, Emanuele NV, Wiitala WL, et al. Intensive glucose control in patients with type 2 diabetes — 15-year follow-up. N Engl J Med. 2019;380(23):2215–24. https://doi.org/10.1056/NEJMoa1806802.

    Article  CAS  Google Scholar 

  132. Lee AK, Warren B, Lee CJ, et al. The association of severe hypoglycemia with incident cardiovascular events and mortality in adults with type 2 diabetes. Diabetes Care. 2017;41(1):104–11. https://doi.org/10.2337/dc17-1669.

    Article  CAS  Google Scholar 

  133. Lee AK, McEvoy JW, Hoogeveen RC, Ballantyne CM, Selvin E. Severe hypoglycemia and elevated high-sensitivity cardiac troponin t in older adults with diabetes: the ARIC study. J Am Coll Cardiol. 2016;68(12):1370–1. https://doi.org/10.1016/j.jacc.2016.06.049.

    Article  Google Scholar 

  134. Boussageon R, Bejan-Angoulvant T, Saadatian-Elahi M, et al. Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials. BMJ. 2011;343:d4169. https://doi.org/10.1136/bmj.d4169.

    Article  Google Scholar 

  135. Ray KK, Seshasai SR, Wijesuriya S, et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet. 2009;373(9677):1765–72. https://doi.org/10.1016/s0140-6736(09)60697-8.

    Article  CAS  Google Scholar 

  136. Turnbull FM, Abraira C, Anderson RJ, et al. Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia. 2009;52(11):2288–98. https://doi.org/10.1007/s00125-009-1470-0.

    Article  CAS  Google Scholar 

  137. Hemmingsen B, Lund SS, Gluud C, et al. Intensive glycaemic control for patients with type 2 diabetes: systematic review with meta-analysis and trial sequential analysis of randomised clinical trials. BMJ. 2011;343:d6898. https://doi.org/10.1136/bmj.d6898.

    Article  Google Scholar 

  138. Hemmingsen B, Lund SS, Gluud C, et al. Targeting intensive glycaemic control versus targeting conventional glycaemic control for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2013;(11):Cd008143. https://doi.org/10.1002/14651858.CD008143.pub3.

  139. Giorgino F, Home PD, Tuomilehto J. Glucose control and vascular outcomes in type 2 diabetes: is the picture clear? Diabetes Care. 2016;39(Supplement 2):S187. https://doi.org/10.2337/dcS15-3023.

    Article  CAS  Google Scholar 

  140. Huang ES, Liu JY, Moffet HH, John PM, Karter AJ. Glycemic control, complications, and death in older diabetic patients. Diabetes Care. 2011;34(6):1329. https://doi.org/10.2337/dc10-2377.

    Article  Google Scholar 

  141. Palta P, Huang ES, Kalyani RR, Golden SH, Yeh H-C. Hemoglobin A 1c and mortality in older adults with and without diabetes: results from the national health and nutrition examination surveys (1988–2011). Diabetes Care. 2017;40(4):453. https://doi.org/10.2337/dci16-0042.

    Article  Google Scholar 

  142. Currie CJ, Peters JR, Tynan A, et al. Survival as a function of HbA(1c) in people with type 2 diabetes: a retrospective cohort study. Lancet. 2010;375(9713):481–9. https://doi.org/10.1016/s0140-6736(09)61969-3.

    Article  CAS  Google Scholar 

  143. Rodriguez-Gutierrez R, Gonzalez-Gonzalez JG, Zuñiga-Hernandez JA, McCoy RG. Benefits and harms of intensive glycemic control in patients with type 2 diabetes. BMJ. 2019;367:l5887. https://doi.org/10.1136/bmj.l5887.

    Article  Google Scholar 

  144. Home PD, Pocock SJ, Beck-Nielsen H, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet. 2009;373(9681):2125–35. https://doi.org/10.1016/S0140-6736(09)60953-3.

    Article  CAS  Google Scholar 

  145. White WB, Cannon CP, Heller SR, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369(14):1327–35. https://doi.org/10.1056/NEJMoa1305889.

    Article  CAS  Google Scholar 

  146. Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369(14):1317–26. https://doi.org/10.1056/NEJMoa1307684.

    Article  CAS  Google Scholar 

  147. Lincoff AM, Tardif J-C, Schwartz GG, et al. Effect of aleglitazar on cardiovascular outcomes after acute coronary syndrome in patients with type 2 diabetes mellitus: the AleCardio randomized clinical trial. JAMA. 2014;311(15):1515–25. https://doi.org/10.1001/jama.2014.3321.

    Article  CAS  Google Scholar 

  148. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28. https://doi.org/10.1056/NEJMoa1504720.

    Article  CAS  Google Scholar 

  149. Pfeffer MA, Claggett B, Diaz R, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373(23):2247–57. https://doi.org/10.1056/NEJMoa1509225.

    Article  CAS  Google Scholar 

  150. Green JB, Bethel MA, Armstrong PW, et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;373(3):232–42. https://doi.org/10.1056/NEJMoa1501352.

    Article  CAS  Google Scholar 

  151. Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22. https://doi.org/10.1056/NEJMoa1603827.

    Article  CAS  Google Scholar 

  152. Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–44. https://doi.org/10.1056/NEJMoa1607141.

    Article  CAS  Google Scholar 

  153. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57. https://doi.org/10.1056/NEJMoa1611925.

    Article  CAS  Google Scholar 

  154. Marso SP, McGuire DK, Zinman B, et al. Efficacy and safety of degludec versus glargine in type 2 diabetes. N Engl J Med. 2017;377(8):723–32. https://doi.org/10.1056/NEJMoa1615692.

    Article  CAS  Google Scholar 

  155. Holman RR, Bethel MA, Mentz RJ, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377(13):1228–39. https://doi.org/10.1056/NEJMoa1612917.

    Article  CAS  Google Scholar 

  156. Hernandez AF, Green JB, Janmohamed S, et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet. 2018;392(10157):1519–29. https://doi.org/10.1016/S0140-6736(18)32261-X.

    Article  CAS  Google Scholar 

  157. Rosenstock J, Perkovic V, Johansen OE, et al. Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: the CARMELINA randomized clinical trial. JAMA. 2019;321(1):69–79. https://doi.org/10.1001/jama.2018.18269.

    Article  CAS  Google Scholar 

  158. Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57. https://doi.org/10.1056/NEJMoa1812389.

    Article  CAS  Google Scholar 

  159. Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019;394(10193):121–30. https://doi.org/10.1016/S0140-6736(19)31149-3.

    Article  CAS  Google Scholar 

  160. Rosenstock J, Kahn SE, Johansen OE, et al. Effect of linagliptin vs glimepiride on major adverse cardiovascular outcomes in patients with type 2 diabetes: the CAROLINA randomized clinical trial. JAMA. 2019;322(12):1155–66. https://doi.org/10.1001/jama.2019.13772.

    Article  CAS  Google Scholar 

  161. Husain M, Birkenfeld AL, Donsmark M, et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2019;381(9):841–51. https://doi.org/10.1056/NEJMoa1901118.

    Article  CAS  Google Scholar 

  162. Cannon CP, Pratley R, Dagogo-Jack S, et al. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med. 2020;383(15):1425–35. https://doi.org/10.1056/NEJMoa2004967.

    Article  CAS  Google Scholar 

  163. Bhatt DL, Szarek M, Pitt B, et al. Sotagliflozin in patients with diabetes and chronic kidney disease. N Engl J Med. 2021;384(2):129–39. https://doi.org/10.1056/NEJMoa2030186.

    Article  CAS  Google Scholar 

  164. Strain WD, Hope SV, Green A, Kar P, Valabhji J, Sinclair AJ. Type 2 diabetes mellitus in older people: a brief statement of key principles of modern day management including the assessment of frailty. A national collaborative stakeholder initiative. Diabet Med. 2018;35(7):838–45. https://doi.org/10.1111/dme.13644.

    Article  CAS  Google Scholar 

  165. Lee SJ, Eng C. Goals of glycemic control in frail older patients with diabetes. JAMA. 2011;305(13):1350–1. https://doi.org/10.1001/jama.2011.404.

    Article  CAS  Google Scholar 

  166. Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice: Developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies With the special contribution of the European Association of Preventive Cardiology (EAPC). Eur Heart J. 2021;42(34):3227–337. https://doi.org/10.1093/eurheartj/ehab484.

    Article  Google Scholar 

  167. Qaseem A, Wilt TJ, Kansagara D, et al. Hemoglobin A1c targets for glycemic control with pharmacologic therapy for nonpregnant adults with type 2 diabetes mellitus: a guidance statement update from the American College of Physicians. Ann Intern Med. 2018;168(8):569–76. https://doi.org/10.7326/m17-0939.

    Article  Google Scholar 

  168. American Diabetes A. 12. Older adults: standards of medical care in diabetes—2021. Diabetes Care. 2021;44(Supplement 1):S168. https://doi.org/10.2337/dc21-S012.

    Article  Google Scholar 

  169. Griffith KN, Prentice JC, Mohr DC, Conlin PR. Predicting 5- and 10-year mortality risk in older adults with diabetes. Diabetes Care. 2020;43(8):1724–31. https://doi.org/10.2337/dc19-1870.

    Article  Google Scholar 

  170. Pratley RE, Kanapka LG, Rickels MR, et al. Effect of continuous glucose monitoring on hypoglycemia in older adults with type 1 diabetes: a randomized clinical trial. JAMA. 2020;323(23):2397–406. https://doi.org/10.1001/jama.2020.6928.

    Article  CAS  Google Scholar 

  171. Sinclair A, Morley JE, Rodriguez-Mañas L, et al. Diabetes Mellitus in Older People: Position Statement on behalf of the International Association of Gerontology and Geriatrics (IAGG), the European Diabetes Working Party for Older People (EDWPOP), and the International Task Force of Experts in Diabetes. J Am Med Dir Assoc. 2012;13(6):497–502. https://doi.org/10.1016/j.jamda.2012.04.012.

    Article  Google Scholar 

  172. American Geriatrics Society Expert Panel on Care of Older Adults with Diabetes M, Moreno G, Mangione CM, Kimbro L, Vaisberg E. Guidelines abstracted from the American Geriatrics Society Guidelines for Improving the Care of Older Adults with Diabetes Mellitus: 2013 update. J Am Geriatr Soc. 2013;61(11):2020–6. https://doi.org/10.1111/jgs.12514.

    Article  Google Scholar 

  173. d’Emden MC, Shaw J, Jones G, Wah CN. Guidance concerning the use of glycated haemoglobin (HbA1c) for the diagnosis of diabetes mellitus. Med J Aust. 2015;203(2):89–90. https://doi.org/10.5694/mja15.00041.

    Article  Google Scholar 

  174. Australian Diabetes Society Position Statement: Individualisation of HbA1c Targets for Adults with Diabetes Mellitus. 2009.

    Google Scholar 

  175. American Association of Clinical Endocrinologists. Comprehensive Type 2 Diabetes Management Algorithm (2020) - EXECUTIVE SUMMARY. https://pro.aace.com/disease-state-resources/diabetes-diabetes-technology/clinical-practice-guidelines-treatment

  176. Handelsman Y, Bloomgarden ZT, Grunberger G, et al. American association of clinical endocrinologists and american college of endocrinology - clinical practice guidelines for developing a diabetes mellitus comprehensive care plan - 2015. Endocr Pract. 2015;21 Suppl 1(Suppl 1):1–87. https://doi.org/10.4158/ep15672.Gl.

    Article  Google Scholar 

  177. Type 2 diabetes in adults: management (2015 (last updated 2020)).

    Google Scholar 

  178. Type 2 diabetes: prevention in people at high risk (2012 (updated 2017)).

    Google Scholar 

  179. Cosentino F, Grant PJ, Aboyans V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: The Task Force for diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). Eur Heart J. 2020;41(2):255–323. https://doi.org/10.1093/eurheartj/ehz486.

    Article  Google Scholar 

  180. Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403. https://doi.org/10.1056/NEJMoa012512.

    Article  CAS  Google Scholar 

  181. Diabetes Prevention Program Research G. 10-year follow-up of diabetes incidence and weight loss in the diabetes prevention program outcomes study. Lancet. 2009;374(9702):1677–86. https://doi.org/10.1016/S0140-6736(09)61457-4.

    Article  Google Scholar 

  182. Crandall J, Schade D, Ma Y, et al. The influence of age on the effects of lifestyle modification and metformin in prevention of diabetes. J Gerontol A Biol Sci Med Sci. 2006;61(10):1075–81. https://doi.org/10.1093/gerona/61.10.1075.

    Article  Google Scholar 

  183. Buse JB, Wexler DJ, Tsapas A, et al. 2019 update to: Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2020;63(2):221–8. https://doi.org/10.1007/s00125-019-05039-w.

    Article  Google Scholar 

  184. Sherifali D, Bai JW, Kenny M, Warren R, Ali MU. Diabetes self-management programmes in older adults: a systematic review and meta-analysis. Diabet Med. 2015;32(11):1404–14. https://doi.org/10.1111/dme.12780.

    Article  CAS  Google Scholar 

  185. Murray CM, Shah BR. Diabetes self-management education improves medication utilization and retinopathy screening in the elderly. Prim Care Diabetes. 2016;10(3):179–85. https://doi.org/10.1016/j.pcd.2015.10.007.

    Article  Google Scholar 

  186. Schlender L, Martinez YV, Adeniji C, et al. Efficacy and safety of metformin in the management of type 2 diabetes mellitus in older adults: a systematic review for the development of recommendations to reduce potentially inappropriate prescribing. BMC Geriatr. 2017;17(1):227. https://doi.org/10.1186/s12877-017-0574-5.

    Article  Google Scholar 

  187. Nissen SE, Wolski K. Effect of Rosiglitazone on the Risk of Myocardial Infarction and Death from Cardiovascular Causes. N Engl J Med. 2007;356(24):2457–71. https://doi.org/10.1056/NEJMoa072761.

    Article  CAS  Google Scholar 

  188. Gallo LA, Wright EM, Vallon V. Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences. Diab Vasc Dis Res. 2015;12(2):78–89. https://doi.org/10.1177/1479164114561992.

    Article  CAS  Google Scholar 

  189. Karagiannis T, Tsapas A, Athanasiadou E, et al. GLP-1 receptor agonists and SGLT2 inhibitors for older people with type 2 diabetes: A systematic review and meta-analysis. Diabetes Res Clin Pract. 2021;174:108737. https://doi.org/10.1016/j.diabres.2021.108737.

    Article  CAS  Google Scholar 

  190. Sun F, Wu S, Wang J, et al. Effect of glucagon-like peptide-1 receptor agonists on lipid profiles among type 2 diabetes: a systematic review and network meta-analysis. Clin Ther. 2015;37(1):225–241.e8. https://doi.org/10.1016/j.clinthera.2014.11.008.

    Article  CAS  Google Scholar 

  191. Onoviran OF, Li D, Toombs Smith S, Raji MA. Effects of glucagon-like peptide 1 receptor agonists on comorbidities in older patients with diabetes mellitus. Ther Adv Chronic Dis. 2019;10:2040622319862691. https://doi.org/10.1177/2040622319862691.

    Article  CAS  Google Scholar 

  192. Robinson LE, Holt TA, Rees K, Randeva HS, Hare JP. Effects of exenatide and liraglutide on heart rate, blood pressure and body weight: systematic review and meta-analysis. BMJ Open. 2013;3(1):e001986. https://doi.org/10.1136/bmjopen-2012-001986.

    Article  Google Scholar 

  193. Umezawa S, Kubota A, Maeda H, et al. Two-year assessment of the efficacy and safety of sitagliptin in elderly patients with type 2 diabetes: post hoc analysis of the ASSET-K study. BMC Endocr Disord. 2015;15:34. https://doi.org/10.1186/s12902-015-0033-2.

    Article  CAS  Google Scholar 

  194. Schott G, Martinez YV, Ediriweera de Silva RE, et al. Effectiveness and safety of dipeptidyl peptidase 4 inhibitors in the management of type 2 diabetes in older adults: a systematic review and development of recommendations to reduce inappropriate prescribing. BMC Geriatr. 2017;17(Suppl 1):226. https://doi.org/10.1186/s12877-017-0571-8.

    Article  Google Scholar 

  195. Karagiannis T, Paschos P, Paletas K, Matthews DR, Tsapas A. Dipeptidyl peptidase-4 inhibitors for treatment of type 2 diabetes mellitus in the clinical setting: systematic review and meta-analysis. BMJ. 2012;344:e1369. https://doi.org/10.1136/bmj.e1369.

    Article  CAS  Google Scholar 

  196. Kahn SE, Haffner SM, Heise MA, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med. 2006;355(23):2427–43. https://doi.org/10.1056/NEJMoa066224.

    Article  CAS  Google Scholar 

  197. Graham DJ, Ouellet-Hellstrom R, MaCurdy TE, et al. Risk of acute myocardial infarction, stroke, heart failure, and death in elderly Medicare patients treated with rosiglitazone or pioglitazone. JAMA. 2010;304(4):411–8. https://doi.org/10.1001/jama.2010.920.

    Article  CAS  Google Scholar 

  198. Winkelmayer WC, Setoguchi S, Levin R, Solomon DH. Comparison of cardiovascular outcomes in elderly patients with diabetes who initiated rosiglitazone vs pioglitazone therapy. Arch Intern Med. 2008;168(21):2368–75. https://doi.org/10.1001/archinte.168.21.2368.

    Article  Google Scholar 

  199. Gerstein HC, Bosch J, Dagenais GR, et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med. 2012;367(4):319–28. https://doi.org/10.1056/NEJMoa1203858.

    Article  CAS  Google Scholar 

  200. By the American Geriatrics Society Beers Criteria Update Expert P. American Geriatrics Society 2015 Updated Beers Criteria for Potentially Inappropriate Medication Use in Older Adults. J Am Geriatr Soc. 2015;63(11):2227–46. https://doi.org/10.1111/jgs.13702.

    Article  Google Scholar 

  201. Whelton PK, Appel LJ, Espeland MA, et al. Sodium reduction and weight loss in the treatment of hypertension in older persons: a randomized controlled trial of nonpharmacologic interventions in the elderly (TONE). JAMA. 1998;279(11):839–46. https://doi.org/10.1001/jama.279.11.839.

    Article  CAS  Google Scholar 

  202. World Health Organization. Body Mass Index (BMI). 2021. https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi. Accessed 2nd August.

  203. Stevens J, Cai J, Pamuk ER, Williamson DF, Thun MJ, Wood JL. The effect of age on the association between body-mass index and mortality. N Engl J Med. 1998;338(1):1–7. https://doi.org/10.1056/NEJM199801013380101.

    Article  CAS  Google Scholar 

  204. Prospective Studies Collaboration. Body-mass index and cause-specific mortality in 900,000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373(9669):1083–96. https://doi.org/10.1016/S0140-6736(09)60318-4.

    Article  Google Scholar 

  205. Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999-2008. JAMA. 2010;303(3):235–41. https://doi.org/10.1001/jama.2009.2014.

    Article  CAS  Google Scholar 

  206. Peralta M, Ramos M, Lipert A, Martins J, Marques A. Prevalence and trends of overweight and obesity in older adults from 10 European countries from 2005 to 2013. Scand J Public Health. 2018;46(5):522–9. https://doi.org/10.1177/1403494818764810.

    Article  Google Scholar 

  207. Sorkin JD. BMI, age, and mortality: the slaying of a beautiful hypothesis by an ugly fact. Am J Clin Nutr. 2014;99(4):759–60. https://doi.org/10.3945/ajcn.114.084780.

    Article  CAS  Google Scholar 

  208. Janssen I, Mark AE. Elevated body mass index and mortality risk in the elderly. Obes Rev. 2007;8(1):41–59. https://doi.org/10.1111/j.1467-789X.2006.00248.x.

    Article  CAS  Google Scholar 

  209. Winter JE, MacInnis RJ, Wattanapenpaiboon N, Nowson CA. BMI and all-cause mortality in older adults: a meta-analysis. Am J Clin Nutr. 2014;99(4):875–90. https://doi.org/10.3945/ajcn.113.068122.

    Article  CAS  Google Scholar 

  210. Batsis JA, Mackenzie TA, Bartels SJ, Sahakyan KR, Somers VK, Lopez-Jimenez F. Diagnostic accuracy of body mass index to identify obesity in older adults: NHANES 1999–2004. Int J Obes. 2016;40(5):761–7. https://doi.org/10.1038/ijo.2015.243.

    Article  CAS  Google Scholar 

  211. Bouchonville MF, Villareal DT. Sarcopenic obesity: how do we treat it? Curr Opin Endocrinol Diabetes Obes. 2013;20(5):412–9. https://doi.org/10.1097/01.med.0000433071.11466.7f.

    Article  Google Scholar 

  212. Stephen WC, Janssen I. Sarcopenic-obesity and cardiovascular disease risk in the elderly. J Nutr Health Aging. 2009;13(5):460–6. https://doi.org/10.1007/s12603-009-0084-z.

    Article  CAS  Google Scholar 

  213. de Hollander EL, Bemelmans WJ, Boshuizen HC, et al. The association between waist circumference and risk of mortality considering body mass index in 65- to 74-year-olds: a meta-analysis of 29 cohorts involving more than 58 000 elderly persons. Int J Epidemiol. 2012;41(3):805–17. https://doi.org/10.1093/ije/dys008.

    Article  Google Scholar 

  214. Powell-Wiley TM, Poirier P, Burke LE, et al. Obesity and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2021;143(21):e984–e1010. https://doi.org/10.1161/CIR.0000000000000973.

    Article  Google Scholar 

  215. Aune D, Giovannucci E, Boffetta P, et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol. 2017;46(3):1029–56. https://doi.org/10.1093/ije/dyw319.

    Article  Google Scholar 

  216. Appel LJ, Moore TJ, Obarzanek E, et al. A clinical trial of the effects of dietary patterns on blood pressure. N Engl J Med. 1997;336(16):1117–24. https://doi.org/10.1056/NEJM199704173361601.

    Article  CAS  Google Scholar 

  217. Wang DD, Li Y, Chiuve SE, et al. Association of specific dietary fats with total and cause-specific mortality. JAMA Intern Med. 2016;176(8):1134–45. https://doi.org/10.1001/jamainternmed.2016.2417.

    Article  Google Scholar 

  218. Bao Y, Han J, Hu FB, et al. Association of nut consumption with total and cause-specific mortality. N Engl J Med. 2013;369(21):2001–11. https://doi.org/10.1056/NEJMoa1307352.

    Article  CAS  Google Scholar 

  219. Yang Q, Zhang Z, Gregg EW, Flanders WD, Merritt R, Hu FB. Added sugar intake and cardiovascular diseases mortality among US adults. JAMA Intern Med. 2014;174(4):516–24. https://doi.org/10.1001/jamainternmed.2013.13563.

    Article  CAS  Google Scholar 

  220. Micha R, Wallace SK, Mozaffarian D. Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus. Circulation. 2010;121(21):2271–83. https://doi.org/10.1161/CIRCULATIONAHA.109.924977.

    Article  Google Scholar 

  221. Song M, Fung TT, Hu FB, et al. Association of animal and plant protein intake with all-cause and cause-specific mortality. JAMA Intern Med. 2016;176(10):1453–63. https://doi.org/10.1001/jamainternmed.2016.4182.

    Article  Google Scholar 

  222. Sacks FM, Svetkey LP, Vollmer WM, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med. 2001;344(1):3–10. https://doi.org/10.1056/nejm200101043440101.

    Article  CAS  Google Scholar 

  223. Cook NR, Cutler JA, Obarzanek E, et al. Long term effects of dietary sodium reduction on cardiovascular disease outcomes: observational follow-up of the trials of hypertension prevention (TOHP). BMJ. 2007;334(7599):885–8. https://doi.org/10.1136/bmj.39147.604896.55.

    Article  Google Scholar 

  224. Reedy J, Krebs-Smith SM, Miller PE, et al. Higher diet quality is associated with decreased risk of all-cause, cardiovascular disease, and cancer mortality among older adults. J Nutr. 2014;144(6):881–9. https://doi.org/10.3945/jn.113.189407.

    Article  CAS  Google Scholar 

  225. Keys A, Menotti A, Karvonen MJ, et al. The diet and 15-year death rate in the seven countries study. Am J Epidemiol. 1986;124(6):903–15. https://doi.org/10.1093/oxfordjournals.aje.a114480.

    Article  CAS  Google Scholar 

  226. Salas-Salvadó J, Becerra-Tomás N, García-Gavilán JF, Bulló M, Barrubés L. Mediterranean diet and cardiovascular disease prevention: what do we know? Prog Cardiovasc Dis. 2018;61(1):62–7. https://doi.org/10.1016/j.pcad.2018.04.006.

    Article  Google Scholar 

  227. Sanches Machado d’Almeida K, Ronchi Spillere S, Zuchinali P, Corrêa Souza G. Mediterranean diet and other dietary patterns in primary prevention of heart failure and changes in cardiac function markers: a systematic review. Nutrients. 2018;10(1) https://doi.org/10.3390/nu10010058.

  228. Estruch R, Ros E, Salas-Salvadó J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368(14):1279–90. https://doi.org/10.1056/NEJMoa1200303.

    Article  CAS  Google Scholar 

  229. Trichopoulou A, Kouris-Blazos A, Wahlqvist ML, et al. Diet and overall survival in elderly people. BMJ. 1995;311(7018):1457. https://doi.org/10.1136/bmj.311.7018.1457.

    Article  CAS  Google Scholar 

  230. Estruch R, Ros E, Salas-Salvadó J, et al. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018;378(25):e34. https://doi.org/10.1056/NEJMoa1800389.

    Article  CAS  Google Scholar 

  231. Karanja NM, Obarzanek E, Lin PH, et al. Descriptive characteristics of the dietary patterns used in the Dietary Approaches to Stop Hypertension Trial. DASH Collaborative Research Group. J Am Diet Assoc. Aug 1999;99(8 Suppl):S19–27. https://doi.org/10.1016/s0002-8223(99)00412-5.

    Article  CAS  Google Scholar 

  232. Seidelmann SB, Claggett B, Cheng S, et al. Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. Lancet Public Health. 2018;3(9):e419–28. https://doi.org/10.1016/S2468-2667(18)30135-X.

    Article  Google Scholar 

  233. Kalla A, Figueredo VM. Alcohol and cardiovascular disease in the geriatric population. Clin Cardiol. 2017;40(7):444–9. https://doi.org/10.1002/clc.22681.

    Article  Google Scholar 

  234. Guthold R, Stevens GA, Riley LM, Bull FC. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob Health. 2018;6(10):e1077–86. https://doi.org/10.1016/S2214-109X(18)30357-7.

    Article  Google Scholar 

  235. Kyu HH, Bachman VF, Alexander LT, et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. BMJ. 2016;354:i3857. https://doi.org/10.1136/bmj.i3857.

    Article  Google Scholar 

  236. Sattelmair J, Pertman J, Ding EL, Kohl HW 3rd, Haskell W, Lee IM. Dose response between physical activity and risk of coronary heart disease: a meta-analysis. Circulation. 2011;124(7):789–95. https://doi.org/10.1161/circulationaha.110.010710.

    Article  Google Scholar 

  237. Physical activity strategy for the WHO European Region 2016–2025; 2016.

    Google Scholar 

  238. Piercy KL, Troiano RP, Ballard RM, et al. The physical activity guidelines for Americans. JAMA. 2018;320(19):2020–8. https://doi.org/10.1001/jama.2018.14854.

    Article  Google Scholar 

  239. Ferraro RA, Pallazola VA, Michos ED. Physical activity, CVD, and older adults. Aging (Albany NY). 2019;11(9):2545–6. https://doi.org/10.18632/aging.101942.

    Article  Google Scholar 

  240. van der Ploeg HP, Chey T, Ding D, Chau JY, Stamatakis E, Bauman AE. Standing time and all-cause mortality in a large cohort of Australian adults. Prev Med. 2014;69:187–91. https://doi.org/10.1016/j.ypmed.2014.10.004.

    Article  Google Scholar 

  241. Zheng H, Orsini N, Amin J, Wolk A, Nguyen VT, Ehrlich F. Quantifying the dose-response of walking in reducing coronary heart disease risk: meta-analysis. Eur J Epidemiol. 2009;24(4):181–92. https://doi.org/10.1007/s10654-009-9328-9.

    Article  Google Scholar 

  242. O’Donovan G, Lee IM, Hamer M, Stamatakis E. Association of “weekend warrior” and other leisure time physical activity patterns with risks for all-cause, cardiovascular disease, and cancer mortality. JAMA Intern Med. 2017;177(3):335–42. https://doi.org/10.1001/jamainternmed.2016.8014.

    Article  Google Scholar 

  243. Chomistek AK, Manson JE, Stefanick ML, et al. Relationship of sedentary behavior and physical activity to incident cardiovascular disease: results from the Women’s Health Initiative. J Am Coll Cardiol. 2013;61(23):2346–54. https://doi.org/10.1016/j.jacc.2013.03.031.

    Article  Google Scholar 

  244. Patterson R, McNamara E, Tainio M, et al. Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: a systematic review and dose response meta-analysis. Eur J Epidemiol. 2018;33(9):811–29. https://doi.org/10.1007/s10654-018-0380-1.

    Article  Google Scholar 

  245. Rezende LFM, Rey-López JP, Matsudo VKR, Luiz OC. Sedentary behavior and health outcomes among older adults: a systematic review. BMC Public Health. 2014;14(1):333. https://doi.org/10.1186/1471-2458-14-333.

    Article  Google Scholar 

  246. Matthews CE, George SM, Moore SC, et al. Amount of time spent in sedentary behaviors and cause-specific mortality in US adults. Am J Clin Nutr. 2012;95(2):437–45. https://doi.org/10.3945/ajcn.111.019620.

    Article  CAS  Google Scholar 

  247. Du Y, Liu B, Sun Y, Snetselaar LG, Wallace RB, Bao W. Trends in adherence to the physical activity guidelines for americans for aerobic activity and time spent on sedentary behavior among US adults, 2007 to 2016. JAMA Netw Open. 2019;2(7):–e197597. https://doi.org/10.1001/jamanetworkopen.2019.7597.

  248. Prince SA, Melvin A, Roberts KC, Butler GP, Thompson W. Sedentary behaviour surveillance in Canada: trends, challenges and lessons learned. Int J Behav Nutr Phys Act. 2020;17(1):34. https://doi.org/10.1186/s12966-020-00925-8.

    Article  Google Scholar 

  249. Bellettiere J, LaMonte MJ, Evenson KR, et al. Sedentary behavior and cardiovascular disease in older women. Circulation. 2019;139(8):1036–46. https://doi.org/10.1161/CIRCULATIONAHA.118.035312.

    Article  CAS  Google Scholar 

  250. Katzmarzyk PT, Church TS, Craig CL, Bouchard C. Sitting time and mortality from all causes, cardiovascular disease, and cancer. Med Sci Sports Exerc. 2009;41(5):998–1005. https://doi.org/10.1249/MSS.0b013e3181930355.

    Article  Google Scholar 

  251. Eijsvogels TMH, Molossi S, Lee D-c, Emery MS, Thompson PD. Exercise at the extremes: the amount of exercise to reduce cardiovascular events. J Am Coll Cardiol. 2016;67(3):316–29. https://doi.org/10.1016/j.jacc.2015.11.034.

    Article  Google Scholar 

  252. Aengevaeren VL, Mosterd A, Sharma S, et al. Exercise and coronary atherosclerosis. Circulation. 2020;141(16):1338–50. https://doi.org/10.1161/CIRCULATIONAHA.119.044467.

    Article  Google Scholar 

  253. Kettunen JA, Kujala UM, Kaprio J, et al. All-cause and disease-specific mortality among male, former elite athletes: an average 50-year follow-up. Br J Sports Med. 2015;49(13):893–7. https://doi.org/10.1136/bjsports-2013-093347.

    Article  Google Scholar 

  254. Zaleski AL, Taylor BA, Panza GA, et al. Coming of age: considerations in the prescription of exercise for older adults. Methodist Debakey Cardiovasc J. 2016;12(2):98–104. https://doi.org/10.14797/mdcj-12-2-98.

    Article  Google Scholar 

  255. Riebe D, Franklin BA, Thompson PD, et al. Updating ACSM’s recommendations for exercise preparticipation health screening. Med Sci Sports Exerc. 2015;47(11):2473–9.

    Article  CAS  Google Scholar 

  256. O’Neill K, Reid G. Perceived barriers to physical activity by older adults. Can J Public Health. 1991;82(6):392–6.

    Google Scholar 

  257. Costello E, Kafchinski M, Vrazel J, Sullivan P. Motivators, barriers, and beliefs regarding physical activity in an older adult population. J Geriatr Phys Ther. 2011;34(3):138–47.

    Article  Google Scholar 

  258. Spiteri K, Broom D, Bekhet AH, de Caro JX, Laventure B, Grafton K. Barriers and motivators of physical activity participation in middle-aged and older-adults - a systematic review. J Aging Phys Act. 2019;27(4):929–44. https://doi.org/10.1123/japa.2018-0343.

    Article  Google Scholar 

  259. Franco MR, Tong A, Howard K, et al. Older people’s perspectives on participation in physical activity: a systematic review and thematic synthesis of qualitative literature. Br J Sports Med. 2015;49(19):1268–76. https://doi.org/10.1136/bjsports-2014-094015.

    Article  Google Scholar 

  260. Schutzer KA, Graves BS. Barriers and motivations to exercise in older adults. Prev Med. 2004;39(5):1056–61. https://doi.org/10.1016/j.ypmed.2004.04.003.

    Article  Google Scholar 

  261. Beauchamp MR, Ruissen GR, Dunlop WL, et al. Group-based physical activity for older adults (GOAL) randomized controlled trial: Exercise adherence outcomes. Health Psychol. 2018;37(5):451–61. https://doi.org/10.1037/hea0000615.

    Article  Google Scholar 

  262. Suaya JA, Stason WB, Ades PA, Normand SL, Shepard DS. Cardiac rehabilitation and survival in older coronary patients. J Am Coll Cardiol. 2009;54(1):25–33. https://doi.org/10.1016/j.jacc.2009.01.078.

    Article  Google Scholar 

  263. Jepma P, Jorstad HT, Snaterse M, et al. Lifestyle modification in older versus younger patients with coronary artery disease. Heart. 2020;106(14):1066–72. https://doi.org/10.1136/heartjnl-2019-316056.

    Article  Google Scholar 

  264. Collet J-P, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: The Task Force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2021;42(14):1289–367. https://doi.org/10.1093/eurheartj/ehaa575.

    Article  Google Scholar 

  265. Knuuti J, Wijns W, Saraste A, et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes: The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Eur Heart J. 2019;41(3):407–77. https://doi.org/10.1093/eurheartj/ehz425.

    Article  Google Scholar 

  266. Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2017;39(2):119–77. https://doi.org/10.1093/eurheartj/ehx393.

    Article  Google Scholar 

  267. O’Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction. Circulation. 2013;127(4):e362–425. https://doi.org/10.1161/CIR.0b013e3182742cf6.

    Article  Google Scholar 

  268. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2021;42(36):3599–726. https://doi.org/10.1093/eurheartj/ehab368.

    Article  CAS  Google Scholar 

  269. Vigorito C, Abreu A, Ambrosetti M, et al. Frailty and cardiac rehabilitation: a call to action from the EAPC cardiac rehabilitation section. Eur J Prev Cardiol. 2017;24(6):577–90. https://doi.org/10.1177/2047487316682579.

    Article  Google Scholar 

  270. Norekvål TM, Allore HG. Cardiac rehabilitation in older adults: is it just lifestyle? Heart. 2020;106(14):1035. https://doi.org/10.1136/heartjnl-2019-316497.

    Article  Google Scholar 

  271. Suaya JA, Shepard DS, Normand SL, Ades PA, Prottas J, Stason WB. Use of cardiac rehabilitation by Medicare beneficiaries after myocardial infarction or coronary bypass surgery. Circulation. 2007;116(15):1653–62. https://doi.org/10.1161/circulationaha.107.701466.

    Article  Google Scholar 

  272. Doll JA, Hellkamp A, Ho PM, et al. Participation in cardiac rehabilitation programs among older patients after acute myocardial infarction. JAMA Intern Med. 2015;175(10):1700–2. https://doi.org/10.1001/jamainternmed.2015.3819.

    Article  Google Scholar 

  273. Thomas RJ, Beatty AL, Beckie TM, et al. Home-based cardiac rehabilitation: a scientific statement from the American Association of Cardiovascular and Pulmonary Rehabilitation, the American Heart Association, and the American College of Cardiology. Circulation. 2019;140(1):e69–89. https://doi.org/10.1161/CIR.0000000000000663.

    Article  Google Scholar 

  274. Snoek JA, Prescott EI, van der Velde AE, et al. Effectiveness of home-based mobile guided cardiac rehabilitation as alternative strategy for nonparticipation in clinic-based cardiac rehabilitation among elderly patients in Europe: a randomized clinical trial. JAMA Cardiol. 2021;6(4):463–8. https://doi.org/10.1001/jamacardio.2020.5218.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. McEvoy .

Editor information

Editors and Affiliations

Ethics declarations

None reported.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murphy, E., Cooney, M.T., McEvoy, J.W. (2023). Atherosclerotic Cardiovascular Disease Prevention in the Older Adult: Part 2. In: Leucker, T.M., Gerstenblith, G. (eds) Cardiovascular Disease in the Elderly. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-031-16594-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16594-8_2

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-16593-1

  • Online ISBN: 978-3-031-16594-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics