Skip to main content

A Semi-automatic Data Generator for Query Answering

  • Conference paper
  • First Online:
Foundations of Intelligent Systems (ISMIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13515))

Included in the following conference series:

  • 854 Accesses

Abstract

Question Answering (QA) is a critical NLP task mainly based on deep learning models that allow users to answer questions in natural language and get a response. Since available general-purpose datasets are often not effective enough to suitably train a QA model, one of the main problems in this context is related to the availability of datasets which fit the considered context. Moreover, such datasets are generally in English, making QA system design in different languages difficult. To alleviate the above-depicted issues, in this work, we propose a framework which automatically generates a dataset for a given language and a given topic. To train our system in any language, an alternative way to evaluate the quality of the answers is needed, so we propose a novel unsupervised method. To test the proposed technique, we generate a dataset for the topic “computer science” and the language “Italian” and compare the performance of a QA system trained on available datasets and the built one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beltagy, I., Cohan, A., Lo, K.: Scibert: Pretrained contextualized embeddings for scientific text. arXiv preprint arXiv:1903.10676, 1(1.3), 8 (2019)

  2. Choi, E., et al.: QUAC: question answering in context. arXiv preprint arXiv:1808.07036 (2018)

  3. Croce, D., Zelenanska, A., Basili, R.: Neural learning for question answering in Italian. In: Ghidini, C., Magnini, B., Passerini, A., Traverso, P. (eds.) AI*IA 2018. LNCS (LNAI), vol. 11298, pp. 389–402. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03840-3_29

    Chapter  Google Scholar 

  4. Joshi, M., Choi, E., Weld, D.S., Zettlemoyer, L.: Triviaqa: a large scale distantly supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551 (2017)

  5. Maia, M., et al.: Www 2018 open challenge: financial opinion mining and question answering (2018)

    Google Scholar 

  6. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019)

  7. Rajpurkar, P., Jia, R., Liang, P.: Know what you don’t know: unanswerable questions for squad. arXiv preprint arXiv:1806.03822 (2018)

  8. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for machine comprehension of text. arXiv preprint arXiv:1606.05250 (2016)

  9. Reddy, S., Chen, D., Manning, C.D.: Coqa: a conversational question answering challenge. TACL 7, 249–266 (2019)

    Article  Google Scholar 

  10. Kǒ ciský, T., et al.: The NarrativeQA reading comprehension challenge. TACL, TBD:TBD (2018)

    Google Scholar 

  11. Adam Trischler, et al.: Newsqa: a machine comprehension dataset. arXiv preprint arXiv:1611.09830 (2016)

  12. van Aken, B., Winter, B., Löser, A., Gers, F.A.: How does Bert answer questions? A layer-wise analysis of transformer representations. In: CIKM, pp. 1823–1832 (2019)

    Google Scholar 

  13. Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., Zhou, M.: Minilm: deep self-attention distillation for task-agnostic compression of pre-trained transformers. arXiv preprint arXiv:2002.10957 (2020)

  14. Wolf, T.: Transformers: State-of-the-Art Natural Language Processing

    Google Scholar 

  15. Xiong, W., et al.: Tweetqa: a social media focused question answering dataset. arXiv preprint arXiv:1907.06292 (2019)

  16. Yang, Y., Yih, W., Meek, C.: Wikiqa: a challenge dataset for open-domain question answering. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 2013–2018 (2015)

    Google Scholar 

  17. Zhong, H., Xiao, C., Tu, C., Zhang, T., Liu, Z., Sun, M.: JEC-QA: a legal-domain question answering dataset. arXiv preprint arXiv:1911.12011 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Nisticò .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Angiulli, F., Del Prete, A., Fassetti, F., Nisticò, S. (2022). A Semi-automatic Data Generator for Query Answering. In: Ceci, M., Flesca, S., Masciari, E., Manco, G., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2022. Lecture Notes in Computer Science(), vol 13515. Springer, Cham. https://doi.org/10.1007/978-3-031-16564-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16564-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16563-4

  • Online ISBN: 978-3-031-16564-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics