Skip to main content

Feature Representation Learning for Robust Retinal Disease Detection from Optical Coherence Tomography Images

  • Conference paper
  • First Online:
Ophthalmic Medical Image Analysis (OMIA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13576))

Included in the following conference series:

Abstract

Ophthalmic images may contain identical-looking pathologies that can cause failure in automated techniques to distinguish different retinal degenerative diseases. Additionally, reliance on large annotated datasets and lack of knowledge distillation can restrict ML-based clinical support systems’ deployment in real-world environments. To improve the robustness and transferability of knowledge, an enhanced feature-learning module is required to extract meaningful spatial representations from the retinal subspace. Such a module, if used effectively, can detect unique disease traits and differentiate the severity of such retinal degenerative pathologies. In this work, we propose a robust disease detection architecture with three learning heads, i) A supervised encoder for retinal disease classification, ii) An unsupervised decoder for the reconstruction of disease-specific spatial information, and iii) A novel representation learning module for learning the similarity between encoder-decoder feature and enhancing the accuracy of the model. Our experimental results on two publicly available OCT datasets illustrate that the proposed model outperforms existing state-of-the-art models in terms of accuracy, interpretability, and robustness for out-of-distribution retinal disease detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alonso-Caneiro, D., Read, S., Collins, M.: Automatic segmentation of choroidal thickness in optical coherence tomography. Biomed. Opt. Express 4(12), 2795–2812 (2013)

    Article  Google Scholar 

  2. Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-Cam++: generalized gradient-based visual explanations for deep convolutional networks. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 839–847. IEEE (2018)

    Google Scholar 

  3. DeBuc, C.: A review of algorithms for segmentation of retinal image data using optical coherence tomography. Image Seg. 1, 15–54 (2011)

    Google Scholar 

  4. Ege, B.: Screening for diabetic retinopathy using computer based image analysis and statistical classification. Comput. Methods Programs Biomed. 62(3), 165–175 (2000)

    Article  Google Scholar 

  5. Fang, L., Cunefare, D., Wang, C., Guymer, R.H., Li, S., Farsiu, S.: Automatic segmentation of nine retinal layer boundaries in oct images of non-exudative AMD patients using deep learning and graph search. Biomed. Opt. Express 8(5), 2732–2744 (2017)

    Article  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. Kafieh, R., Rabbani, H., Kermani, S.: A review of algorithms for segmentation of optical coherence tomography from retina. J. Med. Sig. Sens. 3(1), 45 (2013)

    Article  Google Scholar 

  8. Kamran, S.A., Saha, S., Sabbir, A.S., Tavakkoli, A.: Optic-Net: a novel convolutional neural network for diagnosis of retinal diseases from optical tomography images. In: IEEE International Conference on Machine Learning and Applications, pp. 964–971 (2019)

    Google Scholar 

  9. Kamran, S.A., Tavakkoli, A., Zuckerbrod, S.L.: Improving robustness using joint attention network for detecting retinal degeneration from optical coherence tomography images. In: 2020 IEEE International Conference On Image Processing (ICIP), pp. 2476–2480. IEEE (2020)

    Google Scholar 

  10. Kermany, D.S., et al.: Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5), 1122–1131 (2018)

    Article  Google Scholar 

  11. Kim, J., Tran, L.: Retinal disease classification from oct images using deep learning algorithms. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6. IEEE (2021)

    Google Scholar 

  12. Lee, C.S., Baughman, D.M., Lee, A.Y.: Deep learning is effective for classifying normal versus age-related macular degeneration OCT images. Ophthalmol. Retina 1(4), 322–327 (2017)

    Article  Google Scholar 

  13. Lee, K., Niemeijer, M., Garvin, M.K., Kwon, Y.H., Sonka, M., Abramoff, M.D.: Segmentation of the optic disc in 3-D OCT scans of the optic nerve head. IEEE Trans. Med. Imaging 29(1), 159–168 (2010)

    Article  Google Scholar 

  14. Lee, R., Wong, T.Y., Sabanayagam, C.: Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis. 2(1), 1–25 (2015)

    Article  Google Scholar 

  15. Lim, L.S., Mitchell, P., Seddon, J.M., Holz, F.G., Wong, T.Y.: Age-related macular degeneration. Lancet 379(9827), 1728–1738 (2012)

    Google Scholar 

  16. MeindertNiemeijer, X.C., Lee, L.Z.K., Abràmoff, M.D., Sonka, M.: 3D segmentation of fluid-associated abnormalities in retinal OCT: probability constrained graph-search-graph-cut. IEEE Trans. Med. Imaging 31(8), 1521–1531 (2012)

    Google Scholar 

  17. Nugroho, H.A., Nurfauzi, R.: Convolutional neural network for classifying retinal diseases from OCT2017 dataset. In: 2021 4th International Conference on Information and Communications Technology (ICOIACT), pp. 295–298. IEEE (2021)

    Google Scholar 

  18. Philip, A.M., et al.: Choroidal thickness maps from spectral domain and swept source optical coherence tomography: algorithmic versus ground truth annotation. Br. J. Ophthalmol. 100(10), 1372–1376 (2016)

    Article  Google Scholar 

  19. Quellec, G., Lee, K., Dolejsi, M., Garvin, M.K., Abramoff, M.D., Sonka, M.: Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula. IEEE Trans. Med. Imaging 29(6), 1321–1330 (2010)

    Article  Google Scholar 

  20. Sánchez, C.I., Hornero, R., Lopez, M., Poza, J.: Retinal image analysis to detect and quantify lesions associated with diabetic retinopathy. In: The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1624–1627 (2004)

    Google Scholar 

  21. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  22. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  23. Serener, A., Serte, S.: Dry and wet age-related macular degeneration classification using OCT images and deep learning. In: 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), pp. 1–4. IEEE (2019)

    Google Scholar 

  24. Srinivasan, P.P., et al.: Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images. Biomed Opt. Express 5(10), 3568–3577 (2014)

    Article  Google Scholar 

  25. Subramanian, M., Shanmugavadivel, K., Naren, O.S., Premkumar, K., Rankish, K.: Classification of retinal oct images using deep learning. In: 2022 International Conference on Computer Communication and Informatics (ICCCI), pp. 1–7. IEEE (2022)

    Google Scholar 

  26. Sun, H., et al.: IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 183, 109119 (2022)

    Google Scholar 

  27. Ting, D.S.W., Cheung, G.C.M., Wong, T.Y.: Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clin. Exp. Ophthalmol. 44(4), 260–277 (2016)

    Google Scholar 

  28. Vermeer, K., Van derSchoot, J., Lemij, H., DeBoer, J.: Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images. Biomed Opt. Express 2(6), 1743–1756 (2011)

    Google Scholar 

  29. Wang, X., Gu, Y.: Classification of macular abnormalities using a lightweight CNN-SVM framework. Meas. Sci. Technol. 33(6) (2022)

    Google Scholar 

  30. Xu, Y., et al.: Dual-stage deep learning framework for pigment epithelium detachment segmentation in polypoidal choroidal vasculopathy. Biomed Opt. Express 8(9), 4061–4076 (2017)

    Google Scholar 

  31. Yau, J.W., et al.: Global prevalence and major risk factors of diabetic retinopathy. Diab. Care 35(3), 556–564 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharif Amit Kamran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kamran, S.A., Hossain, K.F., Tavakkoli, A., Zuckerbrod, S.L., Baker, S.A. (2022). Feature Representation Learning for Robust Retinal Disease Detection from Optical Coherence Tomography Images. In: Antony, B., Fu, H., Lee, C.S., MacGillivray, T., Xu, Y., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2022. Lecture Notes in Computer Science, vol 13576. Springer, Cham. https://doi.org/10.1007/978-3-031-16525-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16525-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16524-5

  • Online ISBN: 978-3-031-16525-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics