Abstract
Morocco is one of the most important fig (Ficus carica L.) diversity hotspots globally, where its cultivation is ancestral. This large diversity, alongside its valorization, has gone unheeded for many reasons, some of which have to do with ancient agricultural strategies besides the lack of exhaustive studies. Although being the third worldwide fig producer, Moroccan fig remains less competitive in the international market because of the poorly structured value chain and the lack of efficient marketing strategies. The current chapter aims to assess the fig genetic and chemotypic diversity hosted in Moroccan agroecosystems and the nutritional values of this typical seasonal fruit alongside its positive effects on human health. A particular interest is also given to examining the potential and emerging valorization pathways of fig and its bioproducts. This chapter also provides a critical analysis of fig value chain and market structure, focusing on the sector resilience towards various chocks. The latter, including the recent socioeconomic crisis provoked by COVID-19, is a challenging endeavor since the sector is poorly organized, making it more vulnerable to global changes. This may impact the local population, mainly where this crop constitutes the main income source. Through this chapter, a holistic view of fig diversity and valorization patterns, along with its value chain resilience to a wide range of factors and conditions, explores solutions to the benefit of policy makers, industry, and end-users.
Keywords
- Genetic variability
- Chemo-diversity
- Postharvest valorization
- Value chain
- Chocks resilience
- COVID-19
This is a preview of subscription content, access via your institution.
Buying options





Abbreviations
- ABTS:
-
Ethylbenzothiazoline-6-sulfonic acid
- CE:
-
Catechin equivalent
- cy-3 rutinoside:
-
Cyanindin-3- rutinoside
- DPPH:
-
2,2-diphenyl1-picrylhydrazyl
- dw:
-
dry weight
- FRSA:
-
Free radical scavenging activity
- GAE:
-
Gallic acid equivalent
- IC50:
-
Half maximum inhibitory concentration
- ISSR:
-
Inter-simple sequence repeat
- mM:
-
Millimole
- PCA:
-
Principal components (PC) analysis
- RAPD:
-
Random amplified polymorphic DNA
- RFLP:
-
Restriction fragment length polymorphism
- SSC:
-
Soluble sugars content
- SSR:
-
Simple sequence repeat
- TA:
-
Titratable acidity
- TAC:
-
Total anthocyanins
- TFC:
-
Total flavonoids content
- TPAC:
-
Total pro-anthocyanidins
- TPC:
-
Total phenolic content
- TSS:
-
otal soluble solids
- β-Car:
-
β-carotene
References
Achtak, H. (2009). Domestication et diversification variétale chez le figuier au Maroc: Bases pour la conservation et la valorisation des ressources génétiques locales. PhD thesis, University of Abdelmalek Essaadi, Morocco.
Achtak, H., Oukabli, A., Ater, M., Santoni, S., Kjellberg, F., & Khadari, B. (2009). Microsatellite markers as reliable tools for fig cultivar identification. Journal of the American Society for Horticultural Science, 134, 624–631. https://doi.org/10.21273/JASHS.134.6.624
Achtak, H., Ater, M., Oukabli, A., Santoni, S., Kjellberg, F., & Khadari, B. (2010). Traditional agroecosystems as conservatories and incubators of cultivated plant varietal diversity: The case of fig (Ficus carica L.) in Morocco. BMC Plant Biology, 10, 1–12. https://doi.org/10.1186/1471-2229-10-28
Adak, N., Heybeli, N., & Ertekin, C. (2017). Infrared drying of strawberry. Food Chemistry, 219, 109–116. https://doi.org/10.1016/j.foodchem.2016.09.103
Afsah-Hejri, L., Toudeshki, A., Homayouni, T., Mehrazi, S., Gholami Pareh, A., Gordon, P., & Ehsani, R. (2021). Potential of ozonated-air (OA) application to reduce the weight and volume loss in fresh figs (Ficus carica L.). Postharvest Biology and Technology, 180, 111631. https://doi.org/10.1016/J.POSTHARVBIO.2021.111631
Aksoy, U. (2017). The dried fig management and the potential for new products. Acta Horticulturae, 1173, 377–382. https://doi.org/10.17660/ACTAHORTIC.2017.1173.65
Aljane, F., Ferchichi, A., & Boukhris, M. (2008). Pomologıcal characteristics of local fig (Ficus carica) cultivars in southern Tunısıa. Acta Horticulturae, 798, 123–128. https://doi.org/10.17660/ActaHortic.2008.798.15
Allegra, A., Sortino, G., Inglese, P., Settanni, L., Todaro, A., & Gallotta, A. (2017). The effectiveness of Opuntia ficus-indica mucilage edible coating on post-harvest maintenance of ‘Dottato’ fig (Ficus carica L.) fruit. Food Packaging and Shelf Life, 12, 135–141. https://doi.org/10.1016/J.FPSL.2017.04.010
Allegra, A., Farina, V., Inglese, P., Gallotta, A., & Sortino, G. (2021). Qualitative traits and shelf life of fig fruit (‘Melanzana’) treated with Aloe vera gel coating. Acta Horticulturae, 1310, 87–92. https://doi.org/10.17660/ACTAHORTIC.2021.1310.14
Ater, M., El Oualkadi, A., Achtak, H., Oukabli, M., & Khadari, B. (2008). Diversity of the local varieties of the fig tree in the North-Western Morocco. Acta Horticulturae, 789, 69–76. https://doi.org/10.17660/ActaHortic.2008.798.7
Ateyyeh, A. F., & Sadder, M. T. (2006). Growth pattern and fruit characteristics of six common fig (Ficus carica L.) cultivars in Jordan. Jordan Journal of Agricultural Sciences, 2, 105–112.
Barolo, M. I., Ruiz Mostacero, N., & López, S. N. (2014). Ficus carica L. (Moraceae): An ancient source of food and health. Food Chemistry, 164, 119–127. https://doi.org/10.1016/j.foodchem.2014.04.112
Bet, K. (2015). Changes in quality of dried fig (Ficus carica L.) delight in different packages under cold and ambient storage. https://doi.org/10.20289/euzfd.72940
Boudchicha, R. H., Hormaza, J. I., & Benbouza, H. (2018). Diversity analysis and genetic relationships among local Algerian fig cultivars (Ficus carica L.) using SSR markers. The South African Journal of Botany, 116, 207–215. https://doi.org/10.1016/j.sajb.2018.03.015
Bradford, K. J., Dahal, P., Van Asbrouck, J., Kunusoth, K., Bello, P., Thompson, J., & Wu, F. (2020). The dry chain: Reducing postharvest losses and improving food safety in humid climates. In Food industry wastes (pp. 375–389). https://doi.org/10.1016/B978-0-12-817121-9.00017-6
Caliskan, O., & Polat, A. A. (2008). Fruit characteristics of fig cultivars and genotypes grown in Turkey. Scientia Horticulturae, 115, 360–367. https://doi.org/10.1016/j.scienta.2007.10.017
Çalişkan, O., & Polat, A. A. (2012). Effects of genotype and harvest year on phytochemical and fruit quality properties of Turkish fig genotypes. The Spanish Journal of Agricultural Research, 10, 1048. https://doi.org/10.5424/sjar/2012104-2652
Caliskan, O., & Polat, A. A. (2012). Morphological diversity among fig (Ficus carica L.) accessions sampled from the Eastern Mediterranean Region of Turkey. Turkish Journal of Agriculture and Forestry, 36, 179–193. https://doi.org/10.3906/tar-1102-33
Chatti, K., Salhi-Hannachi, A., Mars, M., Marrakchi, M., & Trifi, M. (2003). Analysis of genetic diversity of Tunisian fig tree cultivars (Ficus carica L.) using morphological characteristics. Fruits, 59, 49–61. https://doi.org/10.1080/15538360802365921
Chimi, H., Ouaouich, A., Semmar, M., & Tayebi, S. (2008). Industrial processing of figs by solar drying in Morocco. Acta Horticulturae, 798, 331–334. https://doi.org/10.17660/ACTAHORTIC.2008.798.48
Chua, K. J., & Chou, S. K. (2003). Low-cost drying methods for developing countries. Trends in Food Science and Technology, 14, 519–528. https://doi.org/10.1016/J.TIFS.2003.07.003
Ciarmiello, L. F., Piccirillo, P., Carillo, P., De Luca, A., & Woodrow, P. (2015). Determination of the genetic relatedness of fig (Ficus carica L.) accessions using RAPD fingerprint and their agro-morphological characterization. South African Journal of Botany, 97, 40–47. https://doi.org/10.1016/j.sajb.2014.11.012
da Silva, W. P., e Silva, C. M. D. P. S., Farias, V. S. O., & Gomes, J. P. (2012). Diffusion models to describe the drying process of peeled bananas: Optimization and simulation. Drying Technology, 30, 164–174. https://doi.org/10.1080/07373937.2011.628554
Derardja A. eddine, Pretzler, M., Kampatsikas, I., Barkat, M., & Rompel, A. (2019). Inhibition of apricot polyphenol oxidase by combinations of plant proteases and ascorbic acid. Food Chemistry X, 4, 100053. https://doi.org/10.1016/j.fochx.2019.100053
Durance, T. (2002). Handbook of food preservation (M. Shafiur Rahman, ed., pp. 809). Marcel Dekker, Inc., 1999. ISBN: 0-8247-0209-3. Food Research International, 35, 409. https://doi.org/10.1016/S0963-9969(00)00143-5
Ekechukwu, O. V. (1999). Review of solar-energy drying systems I: An overview of drying principles and theory. Energy Conversion and Management, 40, 593–613. https://doi.org/10.1016/S0196-8904(98)00092-2
El Hajjam, A., Ezzahouani, A., & Sehhar, E. A. (2018). Conduite technique et inventaire des variétés marocaines locales de figuier (Ficus carica L.) dans quatre principaux sites de production, provinces de Chefchaouen, El Jadida, Ouezzane, et Taounate. Revue Marocaine des Sciences Agronomiques et Vétérinaires, 6, 494–504.
El Khaloui, M. (2010). Valorisation de la figue au Maroc. Transfert de Technologie en Agriculture, 186, 1–4.
Essid, A., Aljane, F., & Ferchichi, A. (2017). Morphological characterization and pollen evaluation of some Tunisian ex situ planted caprifig (Ficus carica L.) ecotypes. South African Journal of Botany, 111, 134–143. https://doi.org/10.1016/j.sajb.2017.03.001
FAO. (2008). An introduction to the basic concepts of food security. Practical guides (p. 3). Food and Agriculture Organization of the United Nations.
FAOSTAT (2019) http://apps.fao.org
Gamboa-Santos, J., Megías-Pérez, R., Soria, A. C., Olano, A., Montilla, A., & Villamiel, M. (2014). Impact of processing conditions on the kinetic of vitamin C degradation and 2-furoylmethyl amino acid formation in dried strawberries. Food Chemistry, 153, 164–170. https://doi.org/10.1016/j.foodchem.2013.12.004
Gauthier, C. (2014). L’Indice des Prix à la consommation (IPC) du mois de mars 2014. Site institutionnel du Haut-Commissariat au Plan du Royaume du Maroc. Retrieved October 23, 2022, from https://www.hcp.ma/L-Indice-des-prix-a-la-consommation-IPC-du-mois-de-Mars-2014_a1386.html
Giraldo, E., Lopez-Corrales, M., & Hormaza, J. I. (2010). Selection of the most discriminating morphological qualitative variables for characterisation of fig germplasm. Journal of the American Society for Horticultural Science, 135, 240–249. https://doi.org/10.21273/JASHS.135.3.240
Hamanaka, D., Norimura, N., Baba, N., Mano, K., Kakiuchi, M., Tanaka, F., & Uchino, T. (2011). Surface decontamination of fig fruit by combination of infrared radiation heating with ultraviolet irradiation. Food Control, 22, 375–380. https://doi.org/10.1016/J.FOODCONT.2010.09.005
Hernández, F. (2016). Phenolic compounds, antioxidant and antidiabetic activity of different cultivars of Ficus carica L. fruits. Journal of Functional Foods, 25, 421–432. https://doi.org/10.1016/j.jff.2016.06.015
Hmimsa, Y., Aumeeruddy-Thomas, Y., & Ater, M. (2012). Vernacular taxonomy, classification and varietal diversity of fig (Ficus carica L.) among Jbala cultivators in northern Morocco. Human Ecology, 40, 301–313. https://doi.org/10.1007/s10745-012-9471-x
Hmimsa, Y., Aumeeruddy-Thomas, Y., & Ater, M. (2017). Une forme spontanée de figuier (Ficus carica L.), le nabut: Diversité de nomenclature, d’usage et de pratiques locales au Nord du Maroc. Revue d’ethnoécologie. https://doi.org/10.4000/ethnoecologie.3186
Hssaini, L. (2020). Etude agro-morphologique, biochimique et chimiométrique d’une collection du figuier (Ficus carica L.): screening, modélisation des isothermes et cinétique de séchage. PhD thesis, University of Sultan Moulay Slimane, Morocco.
Hssaini, L., Charafi, J., Hanine, H., Ennahli, S., Mekaoui, A., Mamouni, A., & Razouk, R. (2019a). Comparative analysis and physio-biochemical screening of an ex-situ fig (Ficus carica L.) collection. Horticulture, Environment and Biotechnology, 60, 671–683. https://doi.org/10.1007/s13580-019-00170-4
Hssaini, L., Hanine, H., Razouk, R., Ennahli, S., Mekaoui, A., & Charafi, J. (2019b). Characterization of local fig clones (Ficus carica L.) collected in Northern Morocco. Fruits, 74, 55–64. https://doi.org/10.17660/th2019/74.2.1
Hssaini, L., Hanine, H., Charafi, J., Razouk, R., Elantari, A., Ennahli, S., Hernández, F., & Ouaabou, R. (2020a). First report on fatty acids composition, total phenolics and antioxidant activity in seeds oil of four fig cultivars (Ficus carica L.) grown in Morocco. OCL, 27, 8. https://doi.org/10.1051/ocl/2020003
Hssaini, L., Hanine, H., Razouk, R., Ennahli, S., Mekaoui, A., Ejjilani, A., & Charafi, J. (2020b). Assessment of genetic diversity in Moroccan fig (Ficus carica L.) collection by combining morphological and physicochemical descriptors. Genetic Resources and Crop Evolution, 67, 457–474. https://doi.org/10.1007/s10722-019-00838-x
Hssaini, L., Hanine, H., Razouk, R., Ennahli, S., Mekaoui, A., Guirrou, I., & Charafi, J. (2020c). Diversity screening of fig (Ficus carica L.) germplasm through integration of morpho-agronomic and biochemical traits. International Journal of Fruit Science, 20, 939–958. https://doi.org/10.1080/15538362.2019.1700871
Hssaini, L., Ouaabou, R., Charafi, J., Idlimam, A., Lamharrar, A., Razouk, R., & Hanine, H. (2020d). Hygroscopic proprieties of fig (Ficus carica L.): Mathematical modelling of moisture sorption isotherms and isosteric heat kinetics. South African Journal of Botany, 145, 265–274. https://doi.org/10.1016/j.sajb.2020.11.026
Hssaini, L., Ouaabou, R., Charafi, J., Razouk, R., Houmanat, K., & Irchad, A. (2021a). Effects of pre-storage ascorbic and salicylic acids treatments on the enzymatic browning and nutritional quality of dried fig: Combined use of biochemical and ATR-FTIR analyses. Vibrational Spectroscopy, 115, 103269. https://doi.org/10.1016/J.VIBSPEC.2021.103269
Hssaini, L., Razouk, R., Charafi, J., Houmanat, K., & Hanine, H. (2021b). Fig seeds: Combined approach of lipochemical assessment using gas chromatography and FTIR-ATR spectroscopy using chemometrics. Vibrational Spectroscopy, 114(3), 103251. https://doi.org/10.1016/j.vibspec.2021.103251
Icyer, N. C., Said, O., Salih, T., & Fatih, K. (2016). Microencapsulation of fig seed oil rich in polyunsaturated fatty acids by spray drying. Journal of Food Measurement and Characterization. https://doi.org/10.1007/s11694-016-9370-8
IPGRI, CIHEAM. (2003). Descriptors for fig. International Plant Genetic Resources Institute/International Centre for Advanced Mediterranean Agronomic Studies.
Ishurd, O., Zgheel, F., Kermagi, A., Flefla, M., Elmabruk, M., Wu, Y., Kennedy, J. F., & Pan, Y. (2004). Microbial (1→3)-β-d-glucans from Libyan figs (Ficus carica). Carbohydrate Polymers, 58, 181–184. https://doi.org/10.1016/J.CARBPOL.2004.06.040
Jayaraman, K. S., & Das Gupta, D. K. (2020). Drying of fruits and vegetables. In Handbook of industrial drying (pp. 643–690). https://doi.org/10.1201/9780429289774-21
Jimenez, C. P. (2016). Comportamiento agronómico y estudio del punto óptimo de maduración nutricional y funcional de variedades de higuera interesantes para consumo en fresco. PhD thesis, University of Extremadura, Spain.
Khadari, B., Lashermes, P., & Kjellberg, F. (1995). RAPD fingerprints for identification and genetic characterization of fig (Ficus carica L.) genotypes. Journal of Genetics and Breeding, 44, 77–86.
Khadari, B., Oukabli, A., Ater, M., Mamouni, A., Roger, J. P., & Kjellberg, F. (2004). Molecular characterization of Moroccan fig germplasm using intersimple sequence repeat and simple sequence repeat markers to establish a reference collection. HortScience, 40, 29–32. https://doi.org/10.21273/HORTSCI.40.1.29
Khadari, B., Oukabli, A., Ater, M., Mamouni, A., Roger, J. P., & Kjellberg, F. (2005). Molecular characterization of Moroccan fig germplasm using intersimple sequence repeat and simple sequence repeat markers to establish a reference collection. HortScience, 40(1), 29–32.
Khadari, B., Roger, J. P., Ater, M., Achtak, H., Oukabli, A., & Kjellberg, F. (2005a). Moroccan fig presents specific genetic resources: A high potential of local selection. III International Symposium on Fig, 798, 33–37. https://doi.org/10.17660/ActaHortic.2008.798.3
Khadari, B., Grout, C., Santoni, S., & Kjellberg, F. (2005b). Contrasted genetic diversity and differentiation among Mediterranean populations of Ficus carica L.: A study using mtDNA RFLP. Genetic resources and crop evolution, 52, 97–109. https://doi.org/10.1007/s10722-005-0290-4
Khadari, B., Roger, J. P., Ater, M., Achtak, H., Oukabli, A., & Kjellberg, F. (2008). Moroccan fig presents specific genetic resources: A high potential of local selection. Acta Horticulturae, 798, 33–37. https://doi.org/10.17660/ActaHortic.2008.798.3
Khadivi, A., Anjam, R., & Anjam, K. (2018). Morphological and pomological characterization of edible fig (Ficus carica L.) to select the superior trees. Scientia Horticulturae, 238, 66–74. https://doi.org/10.1016/j.scienta.2018.04.031
Kousksou, T., Allouhi, A., Belattar, M., Jamil, A., El Rhafiki, T., Arid, A., & Zeraouli, Y. (2015). Renewable energy potential and national policy directions for sustainable development in Morocco. Renewable and Sustainable Energy Reviews, 47, 46–57. https://doi.org/10.1016/j.rser.2015.02.056
Liang, N., Lu, X., Hu, Y., & Kitts, D. D. (2016). Application of attenuated total reflectance-fourier transformed infrared (ATR-FTIR) spectroscopy to determine the chlorogenic acid isomer profile and antioxidant capacity of coffee beans. Journal of Agricultural and Food Chemistry, 64, 681–689. https://doi.org/10.1021/acs.jafc.5b05682
Makris, D. P., Boskou, G., & Andrikopoulos, N. K. (2007). Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. Journal of Food Composition and Analysis, 20, 125–132. https://doi.org/10.1016/j.jfca.2006.04.010
Martins, I. B. A., Oliveira, D., Rosenthal, A., Ares, G., & Deliza, R. (2019). Brazilian consumer’s perception of food processing technologies: A case study with fruit juice. Food Research International, 125, 108555. https://doi.org/10.1016/j.foodres.2019.108555
Mat Desa, W. N., Mohammad, M., & Fudholi, A. (2019). Review of drying technology of fig. Trends in Food Science and Technology, 88, 93–103. https://doi.org/10.1016/j.tifs.2019.03.018
Mesta, R. K., Shivaprasad, M., Hegde, G. M., Nidoni, U., & Kurubar, A. R. (2013). Postharvest management of fruit rot of chilli using solar tunnel dryer. Acta Horticulturae, 1012, 755–758. https://doi.org/10.17660/ACTAHORTIC.2013.1012.101
Meuwissen, M. P. M., Feindt, P. H., Spiegel, A., Termeer, C. J. A. M., Mathijs, E., de Mey, Y., Finger, R., Balmann, A., Wauters, E., Urquhart, J., Vigani, M., Zawalińska, K., Herrera, H., Nicholas-Davies, P., Hansson, H., Paas, W., Slijper, T., Coopmans, I., Vroege, W., Ciechomska, A., Accatino, F., Kopainsky, B., Poortvliet, P. M., Candel, J. J. L., Maye, D., Severini, S., Senni, S., Soriano, B., Lagerkvist, C. J., Peneva, M., Gavrilescu, C., & Reidsma, P. (2019). A framework to assess the resilience of farming systems. Agricultural Systems, 176, 102656. https://doi.org/10.1016/J.AGSY.2019.102656
Mirheidari, F., Khadivi, A., Moradi, Y., & Paryan, S. (2020). Phenotypic variability of naturally grown edible fig (Ficus carica L.) and caprifig (Ficus carica var. caprificus Risso) accessions. Scientia Horticulturae (Amsterdam), 267, 109320. https://doi.org/10.1016/j.scienta.2020.109320
Muji, I., Kralj, M. B., & Joki, S. (2012). Characterisation of volatiles in dried white varieties figs (Ficus carica L.). The Journal of Food Science and Technology, 51(9), 1837–1846. https://doi.org/10.1007/s13197-012-0740-x
Nurlaila, W., Desa, M., Mohammad, M., & Fudholi, A. (2019). SC. Trends in Food Science and Technology. https://doi.org/10.1016/j.tifs.2019.03.018
Office des changes | maroc. (2021, December). Retrieved October 23, 2022, from https://www.oc.gov.ma/sites/default/files/reglementation/pdf/2022-01/IGOC%202022.pdf
Oliphant, T., Mitra, A., & Wilkinson, M. (2012). Contact allergy to sodium sulfite and its relationship to sodium metabisulfite. Contact Dermatitis, 66, 128–130. https://doi.org/10.1111/J.1600-0536.2011.02029.X
Oliveira, A. P., Valentão, P., Pereira, J. A., Silva, B. M., Tavares, F., Andrade, P. B., Faculdade, C., Ciências, D., Pessoa, U. F., & Maia, R. C. (2009). Ficus carica L.: Metabolic and biological screening. Food and Chemical Toxicology, 47, 2841–2846. https://doi.org/10.1016/j.fct.2009.09.004
Oukabli, A., Mamouni, A., Laghezali, M., Roger, J., Kjellberg, F., & Ater, M. (2003a). Genetic variability in Morrocan fig cultivars (Ficus carica L.) based on morphological and pomological data. Acta Horticulturae, 605, 311–318. https://doi.org/10.17660/ActaHortic.2003.605.47
Oukabli, A., Mamouni, A., Laghezali, M., Ater, M., Roger, J. P., & Khadari, B. (2003b). Local caprifig tree characterization and analysis of interest for pollination. Acta Horticulturae, 605, 61–64. https://doi.org/10.17660/ActaHortic.2003.605.7
Palmeira, L., Pereira, C., Dias, M. I., Abreu, R. M. V., Corrêa, R. C. G., Pires, T. C. S. P., Alves, M. J., Barros, L., & Ferreira, I. C. F. R. (2019). Nutritional, chemical and bioactive profiles of different parts of a Portuguese common fig (Ficus carica L.) variety. Food Research International, 126, 108572. https://doi.org/10.1016/j.foodres.2019.108572
Pérez-Sánchez, R., Morales-Corts, M. R., & Gómez-Sánchez, M. Á. (2016). Agro-morphological diversity of traditional fig cultivars grown in Central-Western Spain. Genetika, 48, 533–546. https://doi.org/10.2298/GENSR1602533P
Piazzolla, F., Amodio, M. L., & Colelli, G. (2018). Effects of thermal treatments on quality of ‘Petrelli’ figs during storage. Acta Horticulturae, 1194, 879–886. https://doi.org/10.17660/ACTAHORTIC.2018.1194.124
Piga, A., Pinna, I., Özer, K. B., Agabbio, M., & Aksoy, U. (2004). Hot air dehydration of figs (Ficus carica L.): Drying kinetics and quality loss. International Journal of Food Science and Technology, 39, 793–799. https://doi.org/10.1111/j.1365-2621.2004.00845.x
Podgornik, M., Vuk, I., Vrhovnik, I., & Mavsar, D. (2010). A survey and morphological evaluation of fig (Ficus carica L.) genetic resources from Slovenia. Scientia Horticulturae, 125, 380–389. https://doi.org/10.1016/j.scienta.2010.04.030
Pourghayoumi, M., Bakhshi, D., Rahemi, M., Noroozisharaf, A., Jafari, M., Salehi, M., Chamane, R., & Hernandez, F. (2017). Phytochemical attributes of some dried fig (Ficus carica L.) fruit cultivars grown in Iran. Agriculturae Conspectus Scientificus, 81, 161–166.
Rahman, N. F. A., Shamsudin, R., Ismail, A., & Karim Shah, N. N. A. (2016). Effects of post-drying methods on pomelo fruit peels. Food Science and Biotechnology, 25, 85–90. https://doi.org/10.1007/s10068-016-0102-y
Rankou, H., Culham, A., Jury, S. L., & Christenhusz, M. J. M. (2013). The endemic flora of Morocco. Phytotaxa, 78, 1–69. https://doi.org/10.11646/phytotaxa.78.1.1
Rothwell, J. A., Perez-Jimenez, J., Neveu, V., Medina-Remon, A., M’hiri, N., García-Lobato, P., ... & Scalbert, A. (2013). Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database, 2013.
Saddoud, O., Baraket, G., & Chatti, K. (2011). Using morphological characters and simple sequence repeat (SSR) markers to characterize Tunisian fig (Ficus carica L.) cultivars. Acta Biologica Cracoviensia, 53, 7–14. https://doi.org/10.2478/v10182-011-0019-y
Saki, M., ValizadehKaji, B., Abbasifar, A., & Shahrjerdi, I. (2019). Effect of chitosan coating combined with thymol essential oil on physicochemical and qualitative properties of fresh fig (Ficus carica L.) fruit during cold storage. Journal of Food Measurement and Characterization, 13, 1147–1158. https://doi.org/10.1007/s11694-019-00030-w
Sanchez, R., Morales-Corts, M. R., & Sanchez, M. A. (2016). Agro-morphological diversity of traditional fig cultivars grown in Central-Western Spain. Genetika, 48, 533–546. https://doi.org/10.2298/GENSR1602533P
Schmitzer, V., Slatnar, A., Mikulic-Petkovsek, M., Veberic, R., Krska, B., & Stampar, F. (2011). Comparative study of primary and secondary metabolites in apricot (Prunus armeniaca L.) cultivars. Journal of the Science of Food and Agriculture, 91, 860–866. https://doi.org/10.1002/jsfa.4257
Sedaghat, S., & Rahemi, M. (2018). Effects of physio-chemical changes during fruit development on nutritional quality of fig (Ficus carica L. var.‘Sabz’) under rain-fed condition. Scientia Horticulturae, 237, 44–50. https://doi.org/10.1016/j.scienta.2018.04.003
Simonovic, S. P., & Peck, A. (2013). Dynamic resilience to climate change caused natural disasters in coastal megacities quantification framework. International Journal of Environment and Climate Change, 3, 378–401. https://doi.org/10.9734/BJECC/2013/2504
Singh, P., Shrivastava, V., & Kumar, A. (2018). Recent developments in greenhouse solar drying: A review. Renewable and Sustainable Energy Reviews, 82, 3250–3262. https://doi.org/10.1016/J.RSER.2017.10.020
Solana, R. R., Galego, L. R., Pérez, E., & Anabela, S. (2018). Production method and varietal source influence the volatile profiles of spirits prepared from fig fruits (Ficus carica L.). European Food Research and Technology. https://doi.org/10.1007/s00217-018-3131-3
Solomon, A., & Golubowicz, S. (2006). Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.). The Journal of Agricultural and Food Chemistry, 54(20), 7717–7723.
Stohs, S. J., & Miller, M. J. S. (2014). A case study involving allergic reactions to sulfur-containing compounds including, sulfite, taurine, acesulfame potassium and sulfonamides. Food and Chemical Toxicology, 63, 240–243. https://doi.org/10.1016/J.FCT.2013.11.008
Tan, N. (2017). Effect of cabinet drying method on dried fruit quality and functional properties of ‘Sarilop’ (Ficus carica L.) fig cultivar. Acta Horticulturae, 1173, 359–364. https://doi.org/10.17660/ActaHortic.2017.1173.62
Tareen, M. J., Abbasi, N. A., & Hafiz, I. A. (2012). Postharvest application of salicylic acid enhanced antioxidant enzyme activity and maintained quality of peach cv. “Flordaking” fruit during storage. Scientia Horticulturae (Amsterdam), 142, 221–228. https://doi.org/10.1016/j.scienta.2012.04.027
Tendall, D. M., Joerin, J., Kopainsky, B., Edwards, P., Shreck, A., Le, Q. B., Kruetli, P., Grant, M., & Six, J. (2015). Food system resilience: Defining the concept resilience sustainability. Global Food Security, 6, 17–23. https://doi.org/10.1016/j.gfs.2015.08.001
Veberic, R., & Mikulic-Petkovsek, M. (2015). Phytochemical composition of common fig (Ficus carica L.) cultivars. In Nutritional composition of fruit cultivars (pp. 235–255). Elsevier Inc.
Veberic, R., Colaric, M., & Stampar, F. (2008). Phenolic acids and flavonoids of fig fruit (Ficus carica L.) in the northern Mediterranean region. Food Chemistry, 106, 153–157. https://doi.org/10.1016/j.foodchem.2007.05.061
Vitelli, M., Vessella, F., Cardoni, S., Pollegioni, P., Denk, T., Grimm, G. W., & Simeone, M. C. (2017). Phylogeographic structuring of plastome diversity in Mediterranean oaks (Quercus Group Ilex, Fagaceae). Tree Genetics & Genomes, 13, 1–17. https://doi.org/10.1007/s11295-016-1086-8
Wojdyło, A., Nowicka, P., Carbonell-Barrachina, A. A., & Hernndez, F. (2016). Phenolic compounds, antioxidant and antidiabetic activity of different cultivars of Ficus carica L. fruits. Journal of Functional Foods, 25, 421–432. https://doi.org/10.1016/j.jff.2016.06.015
Acknowledgments
The authors are thankful to Zahra Oussi Ali and Ali Hssaini.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Hssaini, L., Razouk, R., Fadlaoui, A., Houmanat, K. (2023). Figs in Morocco: Diversity Patterns, Valorization Pathways and Value Chain Resilience. In: Ramadan, M.F. (eds) Fig (Ficus carica): Production, Processing, and Properties. Springer, Cham. https://doi.org/10.1007/978-3-031-16493-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-16493-4_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16492-7
Online ISBN: 978-3-031-16493-4
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)