Skip to main content

Physiological Behaviour of Fig Tree (Ficus carica L.) Under Different Climatic Conditions

  • Chapter
  • First Online:
Fig (Ficus carica): Production, Processing, and Properties

Abstract

Climatic conditions in many regions, especially in the Mediterranean basin, have been characterized by the scarcity and seasonal variability of rainfall associated with prolonged high temperatures during summer. Climate change might trigger biodiversity loss and lead to higher selection pressure on plant species. The study of water stress impacts is one of the essential agronomic issues. It allows better management of water resources and a better understanding of adaptation traits that trees may develop to maintain their fruit productivity and quality and survive in different climate disturbances. The fig (Ficus carica L.) tree, one of the oldest cultivated fruit crops globally, is being affected by global warming and changes in the distribution of precipitations. The combined effects of high temperatures and frequent drought have increased the aridity of the already arid fig cultivation regions. Even though fig trees have been widely cultivated in the Mediterranean basin, few studies on fig resilience to climate change. In this context, the present chapter presents the most recent findings on the ecophysiological behaviour of fig tree and their responses to abiotic stresses, particularly high temperatures and water stress. It has been demonstrated that fig cultivars showed two different strategies, (1) an avoidance strategy to cope with extreme heat and water stresses, expressed by the ability to optimize the leaf morphology through stomatal closure and leaf abscission, and (2) an adaptive strategy by maintaining low rates of active photosynthesis and stomatal conductance and reducing water loss. These responses mainly depend on the duration and the intensity of stress and are cultivar-dependent. Fig has also revealed drought stress memorizing by showing a rapid re-growth once the stress is relieved, leading to the extension of the vegetation cycle and biomass production. Chlorophyll degradation and the decrease of stomatal conductance were the first ecophysiological indicators of water stress on the fig tree. Finally, the fig could be considered a drought-stress resilient species considering its rapid growth recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

E:

transpiration rate

FV/FM:

maximum quantum yield of PSII

gs:

leaf stomatal conductance

PN:

photosynthesis rate

RH:

relative humidity

References

  • Abdolahipour, M., Kamgar-Haghighi, A. A., Sepaskhah, A. R., Zand-Parsa, S., Honar, T., & Razzaghi, F. (2019). Time and amount of supplemental irrigation at different distances from tree trunks influence morphological characteristics and physiological responses of rainfed fig trees under drought conditions. Scientia Horticulturae, 253, 241–254.

    Article  Google Scholar 

  • Al-Desouki, M., Abd El-Rahman, I., & Sahar, A. (2009). Effect of some antitranspirants and supplementary irrigation on growth, yield and fruit quality of Sultani fig (Ficus carica) grown in the Egyptian western coastal zone under rainfed conditions. Research Journal of Agriculture and Biological Sciences, 5, 899–908.

    CAS  Google Scholar 

  • Ammar, A. (2020). Caractérisation écophysiologique et adaptation au stress hydrique du figuier (Ficus carica L.). Ph.D dissertation, Higher Institute of Agronomy (ISA) of Chott Mariem, IRESA-University of Sousse, Tunisia. 163pp.

    Google Scholar 

  • Ammar, A., Ben Aissa, I., Mars, M., & Gouiaa, M. (2020a). Seasonal variation of fig tree (Ficus carica L.) physiological characteristics reveals its adaptation performance. South African Journal of Botany, 132, 30–37. https://doi.org/10.1016/j.sajb.2020.04.020

    Article  CAS  Google Scholar 

  • Ammar, A., Ben Aissa, I., Mars, M., & Gouiaa, M. (2020b). Comparative physiological behavior of fig (Ficus carica L.) cultivars in response to water stress and recovery. Scientia Horticulturae, 260, 108881. https://doi.org/10.1016/j.scienta.2019.108881

    Article  CAS  Google Scholar 

  • Bagheri, E., & Sepaskhah, A. R. (2014). Rain-fed fig yield as affected by rainfall distribution. Theoretical and Applied Climatology, 117, 433–439.

    Article  Google Scholar 

  • Bondada, B., & Shutthanandan, J. (2012). Understanding differential responses of grapevine (Vitis vinifera L.) leaf and fruit to water stress and recovery following re-watering. American Journal of Plant Science, 3(9), 1232–1240.

    Article  Google Scholar 

  • Botti, C., Franck, N., Prat, L., Ioannidis, D., & Morales, B. (2003). The effect of climatic conditions on fresh fig fruit yield, quality, and type of crop. Acta Horticulturae, 605, 37–42.

    Article  Google Scholar 

  • Can, H. Z., & Aksoy, U. (2007). Seasonal and diurnal photosynthetic behavior of fig (Ficus carica L.) under semi-arid climatic conditions. Acta Agriculturae Scandinavica, Section B – Soil & Plant Science, 57(4), 297–306.

    Google Scholar 

  • Can, H. Z., Hepaksoy, S., Akoy, U., & Kutlu, E. (2000). Leaf characteristics and net gas exchange of fig cultigens adapted to different climatic zones. Acta Horticulturae, 516, 131–137.

    Article  Google Scholar 

  • Can, H. Z., Meyyaci, K. B., & Balci, B. (2008). Determination of gas exchange capacity of some Breba fig cultivars. Acta Horticulturae, 798, 117–112.

    Article  Google Scholar 

  • Caruso, G., Gennai, C., Ugolini, F., & Gucci, R. (2017). Gas exchange and growth response of young Ficus carica L. plants to water deficit and relief. Acta Horticulturae, 1173, 157–161.

    Article  Google Scholar 

  • De Sousa Andrade, I. P., De Carvalho, D., De Almeida, W. S., Gonçalves Silva, J. B., & Da Silva, L. D. B. (2014). Water requirement and yield of fig trees under different drip irrigation management. Engenharia Agrícola, 34(1), 17–27.

    Article  Google Scholar 

  • El-Shazly, S. M., Mustafa, N. S., & El-berry, I. M. (2014). Evaluation of some fig cultivars grown under water stress conditions in newly reclaimed soils. Middle East Journal of Scientific Research, 21, 1167–1179.

    Google Scholar 

  • FAOstat. (2020). URL:http://www.fao.org/faostat/fr

  • Ferraz, R. A., Leonel, S., Souza, J. M. A., Ferreira, R. B., Modesto, J. H., & Arruda, L. L. (2020). Phenology, vegetative growth, and yield performance of fig in Southeastern Brazil. Pesquisa Agropecuária Brasileira, 55, e01192.

    Article  Google Scholar 

  • Flaishman, M. A., Rodov, V., & Stover, E. (2008). The fig: Botany, horticulture, and breeding. Horticultural Reviews, 34, 113–197.

    Article  CAS  Google Scholar 

  • Gholami, M., Rahemi, M., & Rastegar, S. (2012). Use of rapid screening methods for detecting drought tolerant cultivars of fig (Ficus carica L.). Scientia Horticulturae, 143, 7–14.

    Article  Google Scholar 

  • González-Rodríguez, A. M., & Peters, J. (2009). Strategies of leaf expansion in Ficus carica under semiarid conditions. Plant Biology, 12, 469–474.

    Article  Google Scholar 

  • Honar, T., Shabani, A., Abdolahipour, M., Dalir, N., Sepaskhah, A. R., Haghighi, A. A., & Jafari, M. (2021). Rain-fed fig trees response to supplemental irrigation timing and potassium fertiliser in micro-catchment. The Journal of Horticultural Science and Biotechnology. https://doi.org/10.1080/14620316.2021.1923409

  • Jafari, M., Abdolahi Pour Haghighi, J., & Zare, H. (2012). Mulching impact on plant growth and production of rainfed fig orchards under drought conditions. Journal of Food, Agriculture and Environment, 10, 428–433.

    CAS  Google Scholar 

  • Jevanandam, N., Goh, A. G., & Corlett, R. T. (2013). Climate warming and the potential extinction of fig wasps, the obligate pollinators of figs. Biology Letters, 9(3), 20130041. https://doi.org/10.1098/rsbl.2013.0041

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong, M., Lampinen, B., Shackel, K., & Crisosto, C. H. (2013). Fruit skin side cracking and ostiole-end splitting shorten postharvest life in fresh figs (Ficus carica L.), but are reducedby deficit irrigation. Postharvest Biology and Technology, 85, 154–161.

    Article  Google Scholar 

  • Kutlu, E., Can, H. Z., Aksoy, U., & Hepaksoy, S. (2000). Evaluation of gas exchange capacity and physiological responses of selected Sarilop (Caliyrma) fig clones. Acta Horticulturae, 517, 59–63.

    Article  Google Scholar 

  • Mars, M. (2003). Fig (Ficus carica L.) genetic resources and breeding. Acta Horticulturae, 605, 19–27.

    Article  Google Scholar 

  • Melgarejo, P., Martínez, J. J., Hernández, F., Salazar, D. M., & Martínez, R. (2007). Preliminary results on fig soil-less culture. Scientia Horticulturae, 111, 255–259.

    Article  Google Scholar 

  • Mohamed, Y. I., & El-Berry, I. M. (2021). Alleviation of drought stress on rainfed fig (Ficus carica L.) trees in Egypt using the foliar application of Ascorbic and Citric Acids. Acta Horticulturae, 1310, 235–242. https://doi.org/10.17660/ActaHortic.2021.1310.36

    Article  Google Scholar 

  • Moniruzzaman, M., Anuar, N., Yaakob, Z., Aminul Islam, A. K. M., & Al-Khayri, J. M. (2020). Performance evaluation of seventeen common fig (Ficus carica L.) cultivars introduced to a tropical climate. Horticulture, Environment, and Technology, 61, 795–806.

    Article  Google Scholar 

  • Mordoğan, N., Hakerlerler, H., Ceylan, Ş., Aydın, Ş., Yağmur, B., & Aksoy, U. (2013). Effect of organic fertilization on fig leaf nutrients and fruit quality. Journal of Plant Nutrition, 36, 1128–1137.

    Article  Google Scholar 

  • Naidoo, G., & Naidoo, K. K. (2018). Drought stress effects on gas exchange and water relations of the invasive weed Chromolaena odorata. Flora, 248, 1–9.

    Article  Google Scholar 

  • Oukabli, A., Mekaoui, A., Ibnouali-El-Aloui, M., & Bari, A. (2008). Contribution to identification of fig (Ficus carica L.) genotypes tolerant to drought. Acta Horticulturae, 798, 87–93.

    Article  Google Scholar 

  • Pigé, L. C., Salager, J.-L., Hossaert-Mckey, M., & Roy, J. (2001). Carbon allocation to volatiles and other reproductive components in male Ficus carica (Moraceae). American Journal of Botany, 88, 2214–2220.

    Article  Google Scholar 

  • Pirasteh-Anosheh, H., Saed-Moucheshi, A., Pakniyat, H., & Pessarakli, M. (2016). Stomatal responses to drought stress. Water stress and crop plants: A sustainable approach (pp. 24–40). Wiley.

    Google Scholar 

  • Psimisi, E., Vemmos, S. N., & Mili, E. (2012). The photosynthetic activity and evaluation of fruit quality in seven fig cultivars (Ficus carica L.). Acta Horticulturae, 940, 341–348. https://doi.org/10.17660/ActaHortic.2012.940.48

    Article  Google Scholar 

  • Roger, J.P. (2002). La conduite du figuier Ficus carica L. famille des moracées genre Ficus. Synthèse. In Acte de la journée figuier. Potentialités et perspectives de développement de la figue sèche au Maroc (pp. 32–41).

    Google Scholar 

  • Rostami, A. A., & Rahemi, M. (2013a). Responses of caprifig genotypes to water stress and recovery. Journal of Biological & Environmental, 7(21), 131–139.

    Google Scholar 

  • Rostami, A. A., & Rahemi, M. (2013b). Screening drought tolerance in caprifig varieties in accordance to responses of antioxidant enzymes. World Applied Sciences Journal, 21(8), 1213–1219.

    CAS  Google Scholar 

  • Shahidi-Rad, K., Shekafandeh, A., & Jamali, B. (2015). Physiological and antioxidant enzymes responses of two fig cultivars under drought stress. Jordan Journal of Agricultural Sciences, 11(2), 381–391. https://doi.org/10.12816/0030433

    Article  Google Scholar 

  • Shirbani, S., Pour Hagigi, J. A., Jafari, M., & Davarynejad, G. H. (2013). Physiological and biochemical responses of four edible fig cultivars to water stress condition. Scholarly Journal of Agricultural Science, 3(11), 473–479.

    Google Scholar 

  • Tapia, R., Botti, C., Carrasco, O., Prat, L., & Franck, N. (2003). Effect of four irrigation rates on growth of six fig tree varieties. Acta Horticulturae, 605, 113–118.

    Article  Google Scholar 

  • Vemmos, S. N., Petri, E., & Stournaras, V. (2013). Seasonal changes in photosynthetic activity and carbohydrate content in leaves and fruit of three fig cultivars (Ficus carica L.). Scientia Horticulturae, 160, 198–207.

    Article  CAS  Google Scholar 

  • Zare, H., Zare, E., Sedaghat, S., & Jafari, M. (2021). Investigation of different horticultural practices to minimize drought impacts in rainfed fig (Ficus carica L. ‘Sabz’). Acta Horticulturae, 1310, 211–216. https://doi.org/10.17660/ActaHortic.2021.1310.32

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ammar, A., Ben Aissa, I., Zaouay, F., Gouiaa, M., Mars, M. (2023). Physiological Behaviour of Fig Tree (Ficus carica L.) Under Different Climatic Conditions. In: Ramadan, M.F. (eds) Fig (Ficus carica): Production, Processing, and Properties. Springer, Cham. https://doi.org/10.1007/978-3-031-16493-4_10

Download citation

Publish with us

Policies and ethics