Skip to main content

GANs for Integration of Deterministic Model and Observations in Marine Ecosystem

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13566))

Included in the following conference series:

  • 1355 Accesses

Abstract

Monitoring the marine ecosystem can be done via observations (either in-situ or satellite) and via deterministic models. However, each of these methods has some drawbacks: observations can be accurate but insufficient in terms of temporal and spatial coverage, while deterministic models cover the whole marine ecosystem but can be inaccurate. This work aims at developing a deep learning model to reproduce the biogeochemical variables in the Mediterranean Sea, integrating observations and the output of an existing deterministic model of the marine ecosystem. In particular, two deep learning architectures will be proposed and tested: first EmuMed, an emulator of the deterministic model, and then InpMed, which consists of an improvement of the latter by the addition of information provided by in-situ and satellite observations. Results show that EmuMed can successfully reproduce the output of the deterministic model, while ImpMed can successfully make use of the additional information provided, thus improving our ability to monitor the biogeochemical variables in the Mediterranean Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. The global ocean observing system. https://www.goosocean.org/. Accessed 22 Mar 2022

  2. Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). https://doi.org/10.1109/ICEngTechnol.2017.8308186

  3. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 417–424 (2000)

    Google Scholar 

  4. Colella, S., Falcini, F., Rinaldi, E., Sammartino, M., Santoleri, R.: Mediterranean ocean colour chlorophyll trends. PLoS One 11(6), e0155756 (2016)

    Article  Google Scholar 

  5. Cossarini, G., et al.: High-resolution reanalysis of the mediterranean sea biogeochemistry (1999–2019). Front. Marine Sci. 1537 (2021)

    Google Scholar 

  6. Euzen, A., Gaill, F., Lacroix, D., Cury, O.: The ocean revealed (2017)

    Google Scholar 

  7. Fennel, K., et al.: Advancing marine biogeochemical and ecosystem reanalyses and forecasts as tools for monitoring and managing ecosystem health. Front. Mar. Sci. 6, 89 (2019)

    Article  Google Scholar 

  8. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  9. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. (ToG) 36(4), 1–14 (2017)

    Article  Google Scholar 

  10. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  11. Pathak, D., Krähenbühl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. CoRR abs/1604.07379 (2016). http://arxiv.org/abs/1604.07379

  12. Sauzède, R., Johnson, J., Claustre, H., Camps-Valls, G., Ruescas, A.: Estimation of oceanic particulate organic carbon with machine learning. ISPRS Ann. Photogr. Remote Sens. Spat. Inf. Sci. 2, 949–956 (2020)

    Article  Google Scholar 

  13. Sonnewald, M., Lguensat, R., Jones, D.C., Dueben, P., Brajard, J., Balaji, V.: Bridging observations, theory and numerical simulation of the ocean using machine learning. Environ. Res. Lett. (2021)

    Google Scholar 

  14. Teruzzi, A., Bolzon, G., Feudale, L., Cossarini, G.: Deep chlorophyll maximum and nutricline in the mediterranean sea: emerging properties from a multi-platform assimilated biogeochemical model experiment. Biogeosciences 18(23), 6147–6166 (2021)

    Article  Google Scholar 

  15. Teruzzi, A., Di Cerbo, P., Cossarini, G., Pascolo, E., Salon, S.: Parallel implementation of a data assimilation scheme for operational oceanography: the case of the MedBFM model system. Comput. Geosci. 124, 103–114 (2019)

    Article  Google Scholar 

  16. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Manzoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pietropolli, G., Cossarini, G., Manzoni, L. (2022). GANs for Integration of Deterministic Model and Observations in Marine Ecosystem. In: Marreiros, G., Martins, B., Paiva, A., Ribeiro, B., Sardinha, A. (eds) Progress in Artificial Intelligence. EPIA 2022. Lecture Notes in Computer Science(), vol 13566. Springer, Cham. https://doi.org/10.1007/978-3-031-16474-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16474-3_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16473-6

  • Online ISBN: 978-3-031-16474-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics