Skip to main content

Suppressing Poisoning Attacks on Federated Learning for Medical Imaging

  • Conference paper
  • First Online:
Book cover Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Collaboration among multiple data-owning entities (e.g., hospitals) can accelerate the training process and yield better machine learning models due to the availability and diversity of data. However, privacy concerns make it challenging to exchange data while preserving confidentiality. Federated Learning (FL) is a promising solution that enables collaborative training through exchange of model parameters instead of raw data. However, most existing FL solutions work under the assumption that participating clients are honest and thus can fail against poisoning attacks from malicious parties, whose goal is to deteriorate the global model performance. In this work, we propose a robust aggregation rule called Distance-based Outlier Suppression (DOS) that is resilient to byzantine failures. The proposed method computes the distance between local parameter updates of different clients and obtains an outlier score for each client using Copula-based Outlier Detection (COPOD). The resulting outlier scores are converted into normalized weights using a softmax function, and a weighted average of the local parameters is used for updating the global model. DOS aggregation can effectively suppress parameter updates from malicious clients without the need for any hyperparameter selection, even when the data distributions are heterogeneous. Evaluation on two medical imaging datasets (CheXpert and HAM10000) demonstrates the higher robustness of DOS method against a variety of poisoning attacks in comparison to other state-of-the-art methods. The code can be found at https://github.com/Naiftt/SPAFD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. PyTorch: an imperative style, high-performance deep learning library

    Google Scholar 

  2. Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V.: How to backdoor federated learning. In: International Conference on Artificial Intelligence and Statistics, pp. 2938–2948. PMLR (2020)

    Google Scholar 

  3. Bhagoji, A.N., Chakraborty, S., Mittal, P., Calo, S.: Model poisoning attacks in federated learning. In: Proceedings of Workshop on Security Machine Learning (SecML) 32nd Conference Neural Information Processing Systems (NeurIPS), pp. 1–23 (2018)

    Google Scholar 

  4. Bhagoji, A.N., Chakraborty, S., Mittal, P., Calo, S.: Analyzing federated learning through an adversarial lens. In: International Conference on Machine Learning, pp. 634–643. PMLR (2019)

    Google Scholar 

  5. Blanchard, P., El Mhamdi, E.M., Guerraoui, R., Stainer, J.: Machine learning with adversaries: Byzantine tolerant gradient descent. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  6. Chen, Z., Zhu, M., Yang, C., Yuan, Y.: Personalized retrogress-resilient framework for real-world medical federated learning. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 347–356. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_33

    Chapter  Google Scholar 

  7. Cheng, Z., Zou, C., Dong, J.: Outlier detection using isolation forest and local outlier factor. In: Proceedings of the Conference on Research in Adaptive and Convergent Systems, pp. 161–168 (2019)

    Google Scholar 

  8. Cohen, J.P., et al.: TorchXRayVision: a library of chest X-ray datasets and models (2020). https://github.com/mlmed/torchxrayvision, https://github.com/mlmed/torchxrayvision

  9. Dayan, I., et al.: Federated learning for predicting clinical outcomes in patients with COVID-19. Nat. Med. 27(10), 1735–1743 (2021)

    Article  Google Scholar 

  10. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)

    Article  Google Scholar 

  11. Fang, M., Cao, X., Jia, J., Gong, N.: Local model poisoning attacks to \(\{\)Byzantine-Robust\(\}\) federated learning. In: 29th USENIX Security Symposium (USENIX Security 2020), pp. 1605–1622 (2020)

    Google Scholar 

  12. Fu, S., Xie, C., Li, B., Chen, Q.: Attack-resistant federated learning with residual-based reweighting. arXiv preprint arXiv:1912.11464 (2019)

  13. Gardner, W.A.: Learning characteristics of stochastic-gradient-descent algorithms: a general study, analysis, and critique. Signal Process. 6(2), 113–133 (1984)

    Article  MathSciNet  Google Scholar 

  14. Guerraoui, R., Rouault, S., et al.: The hidden vulnerability of distributed learning in byzantium. In: International Conference on Machine Learning, pp. 3521–3530. PMLR (2018)

    Google Scholar 

  15. Hand, D.J., Till, R.J.: A simple generalisation of the area under the roc curve for multiple class classification problems. Mach. Learn. 45(2), 171–186 (2001)

    Article  MATH  Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  17. Irvin, J., et al.: CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 590–597 (2019)

    Google Scholar 

  18. Kaushal, A., Altman, R., Langlotz, C.: Health care AI systems are biased. Scientific American, vol. 17 (2020)

    Google Scholar 

  19. Lamport, L.: The weak Byzantine generals problem. J. ACM (JACM) 30(3), 668–676 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, methods, and future directions. IEEE Signal Process. Mag. 37(3), 50–60 (2020)

    Article  Google Scholar 

  21. Li, Z., Zhao, Y., Botta, N., Ionescu, C., Hu, X.: COPOD: copula-based outlier detection. In: 2020 IEEE International Conference on Data Mining (ICDM), pp. 1118–1123. IEEE (2020)

    Google Scholar 

  22. Likas, A., Vlassis, N., Verbeek, J.J.: The global k-means clustering algorithm. Pattern Recogn. 36(2), 451–461 (2003)

    Article  Google Scholar 

  23. Liu, Z., Xiong, R., Jiang, T.: Clinical-inspired network for skin lesion recognition. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 340–350. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_33

    Chapter  Google Scholar 

  24. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  25. Muñoz-González, L., et al.: Towards poisoning of deep learning algorithms with back-gradient optimization. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 27–38 (2017)

    Google Scholar 

  26. Panda, A., Mahloujifar, S., Nitin Bhagoji, A., Chakraborty, S., Mittal, P.: SparseFed: mitigating model poisoning attacks in federated learning with sparsification. In: Proceedings of AISTATS, pp. 7587–7624 (2022)

    Google Scholar 

  27. van Panhuis, W.G., et al.: A systematic review of barriers to data sharing in public health. BMC Public Health 14, 1144 (2014)

    Article  Google Scholar 

  28. Pillutla, K., Kakade, S.M., Harchaoui, Z.: Robust aggregation for federated learning. IEEE Trans. Signal Process. 70, 1142–1154 (2022)

    Article  MathSciNet  Google Scholar 

  29. Primartha, R., Tama, B.A.: Anomaly detection using random forest: a performance revisited. In: 2017 International Conference on Data and Software Engineering (ICoDSE), pp. 1–6. IEEE (2017)

    Google Scholar 

  30. Sheller, M.J., et al.: Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Nat. Sci. Rep. 10(1), 12598 (2020)

    Google Scholar 

  31. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5(1), 1–9 (2018)

    Article  Google Scholar 

  32. Wei, X., Shen, C.: Federated learning over noisy channels: convergence analysis and design examples. IEEE Trans. Cogn. Commun. Netw. 8(2), 1253–1268 (2022)

    Article  Google Scholar 

  33. Yin, D., Chen, Y., Kannan, R., Bartlett, P.: Byzantine-robust distributed learning: Towards optimal statistical rates. In: International Conference on Machine Learning, pp. 5650–5659. PMLR (2018)

    Google Scholar 

  34. Zhou, X., Xu, M., Wu, Y., Zheng, N.: Deep model poisoning attack on federated learning. Future Internet 13(3), 73 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthik Nandakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alkhunaizi, N., Kamzolov, D., Takáč, M., Nandakumar, K. (2022). Suppressing Poisoning Attacks on Federated Learning for Medical Imaging. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13438. Springer, Cham. https://doi.org/10.1007/978-3-031-16452-1_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16452-1_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16451-4

  • Online ISBN: 978-3-031-16452-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics