Skip to main content

Few-Shot Generation of Personalized Neural Surrogates for Cardiac Simulation via Bayesian Meta-learning

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Clinical adoption of personalized virtual heart simulations faces challenges in model personalization and expensive computation. While an ideal solution is an efficient neural surrogate that at the same time is personalized to an individual subject, the state-of-the-art is either concerned with personalizing an expensive simulation model, or learning an efficient yet generic surrogate. This paper presents a completely new concept to achieve personalized neural surrogates in a single coherent framework of meta-learning (metaPNS). Instead of learning a single neural surrogate, we pursue the process of learning a personalized neural surrogate using a small amount of context data from a subject, in a novel formulation of few-shot generative modeling underpinned by: 1) a set-conditioned neural surrogate for cardiac simulation that, conditioned on subject-specific context data, learns to generate query simulations not included in the context set, and 2) a meta-model of amortized variational inference that learns to condition the neural surrogate via simple feed-forward embedding of context data. As test time, metaPNS delivers a personalized neural surrogate by fast feed-forward embedding of a small and flexible number of data available from an individual, achieving – for the first time – personalization and surrogate construction for expensive simulations in one end-to-end learning framework. Synthetic and real-data experiments demonstrated that metaPNS was able to improve personalization and predictive accuracy in comparison to conventionally-optimized cardiac simulation models, at a fraction of computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aliev, R.R., Panfilov, A.V.: A simple two-variable model of cardiac excitation. Chaos Solitons Fractals 7(3), 293–301 (1996)

    Article  Google Scholar 

  2. Arevalo, H.J., et al.: Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models. Nat. Commun. 7(1), 1–8 (2016)

    Article  Google Scholar 

  3. Bergquist, J.A., Good, W.W., Zenger, B., Tate, J.D., Rupp, L.C., MacLeod, R.S.: The electrocardiographic forward problem: A benchmark study. Comput. Biol. Med. 134, 104476 (2021)

    Article  Google Scholar 

  4. Cacciola, F.: Triangulated surface mesh simplification. In: Board, C.E. (ed.) CGAL User and Reference Manual, 3.3 edn. (2007). http://www.cgal.org/Manual/3.3/doc_html/cgal_manual/packages.html#Pkg:SurfaceMeshSimplification

  5. Cantwell, C.D., et al.: Rethinking multiscale cardiac electrophysiology with machine learning and predictive modelling. Comput. Biol. Med. 104, 339–351 (2019)

    Article  Google Scholar 

  6. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

  7. Coveney, S., Corrado, C., Oakley, J.E., Wilkinson, R.D., Niederer, S.A., Clayton, R.H.: Bayesian calibration of electrophysiology models using restitution curve emulators. Front. Physiol. 12, 1120 (2021)

    Google Scholar 

  8. Dhamala, J., et al.: Quantifying the uncertainty in model parameters using gaussian process-based Markov chain Monte Carlo in cardiac electrophysiology. Med. Image Anal. 48, 43–57 (2018)

    Article  Google Scholar 

  9. Dhamala, J., et al.: Embedding high-dimensional Bayesian optimization via generative modeling: parameter personalization of cardiac electrophysiological models. Med. Image Anal. 62, 101670 (2020)

    Article  Google Scholar 

  10. Dhamala, J., Ghimire, S., Sapp, J.L., Horáček, B.M., Wang, L.: High-dimensional Bayesian optimization of personalized cardiac model parameters via an embedded generative model. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 499–507. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_56

    Chapter  Google Scholar 

  11. Fey, M., Eric Lenssen, J., Weichert, F., Müller, H.: SplineCNN: fast geometric deep learning with continuous B-spline kernels. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 869–877 (2018)

    Google Scholar 

  12. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)

    Google Scholar 

  13. Fresca, S., Manzoni, A., Dedè, L., Quarteroni, A.: POD-enhanced deep learning-based reduced order models for the real-time simulation of cardiac electrophysiology in the left atrium. Front. Physiol. 12, 1431 (2021)

    Article  Google Scholar 

  14. Giffard-Roisin, S., et al.: Noninvasive personalization of a cardiac electrophysiology model from body surface potential mapping. IEEE Trans. Biomed. Eng. 64(9), 2206–2218 (2016)

    Article  Google Scholar 

  15. Jiang, X., Ghimire, S., Dhamala, J., Li, Z., Gyawali, P.K., Wang, L.: Learning geometry-dependent and physics-based inverse image reconstruction. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 487–496. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_47

    Chapter  Google Scholar 

  16. Jiang, X., et al.: Label-free physics-informed image sequence reconstruction with disentangled spatial-temporal modeling. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 361–371. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_35

    Chapter  Google Scholar 

  17. Kashtanova, V., Ayed, I., Cedilnik, N., Gallinari, P., Sermesant, M.: EP-Net 2.0: out-of-domain generalisation for deep learning models of cardiac electrophysiology. In: Ennis, D.B., Perotti, L.E., Wang, V.Y. (eds.) FIMH 2021. LNCS, vol. 12738, pp. 482–492. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78710-3_46

    Chapter  Google Scholar 

  18. Kasim, M.F., et al.: Building high accuracy emulators for scientific simulations with deep neural architecture search. Mach. Learn. Sci. Technol. 3(1), 015013 (2021)

    Article  MathSciNet  Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  20. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)

  21. Miller, R., Kerfoot, E., Mauger, C., Ismail, T.F., Young, A.A., Nordsletten, D.A.: An implementation of patient-specific biventricular mechanics simulations with a deep learning and computational pipeline. Front. Physiol. 12, 1398 (2021)

    Article  Google Scholar 

  22. Neumann, D., Mansi, T.: Machine learning methods for robust parameter estimation. In: Artificial Intelligence for Computational Modeling of the Heart, pp. 161–181. Elsevier (2020)

    Google Scholar 

  23. Niederer, S., et al.: Creation and application of virtual patient cohorts of heart models. Phil. Trans. R. Soc. A 378(2173), 20190558 (2020)

    Article  Google Scholar 

  24. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  25. Prakosa, A., et al.: Personalized virtual-heart technology for guiding the ablation of infarct-related ventricular tachycardia. Nat. Biomed. Eng. 2(10), 732–740 (2018)

    Article  Google Scholar 

  26. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning (2016)

    Google Scholar 

  27. Sermesant, M., et al.: Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: a preliminary clinical validation. Med. Image Anal. 16(1), 201–215 (2012)

    Article  Google Scholar 

  28. Wong, K.C., et al.: Velocity-based cardiac contractility personalization from images using derivative-free optimization. J. Mech. Behav. Biomed. Mater. 43, 35–52 (2015)

    Article  Google Scholar 

  29. Zettinig, O., et al.: Fast data-driven calibration of a cardiac electrophysiology model from images and ECG. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 1–8. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_1

    Chapter  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Institutes of Health (NIH) under Award Numbers R01HL145590 and F30HL149327; the NIH NIGMS Center for Integrative Biomedical Computing (www.sci.utah.edu/cibc), NIH NIGMS grants P41GM103545 and R24 GM136986; the NSF GRFP; the Utah Graduate Research Fellowship; and the Nora Eccles Harrison Foundation for Cardiovascular Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiajun Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, X. et al. (2022). Few-Shot Generation of Personalized Neural Surrogates for Cardiac Simulation via Bayesian Meta-learning. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13438. Springer, Cham. https://doi.org/10.1007/978-3-031-16452-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16452-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16451-4

  • Online ISBN: 978-3-031-16452-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics